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RESUMO 

 

Turbinas a gás podem ser uma solução para a geração distribuída de energia. 

Este trabalho visa à comparação entre o projeto de turbinas axiais e radiais para a 

aplicação em microturbinas a gás, mais especificamente em turbinas derivadas de 

turbo-compressores automotivos. 

A análise será feita através de dois métodos: o triângulo de velocidades e a 

simulação numérica através de programa comercial de dinâmica dos fluidos 

computacional (CFD).  

O triângulo de velocidades é um método semi-empírico com base na 

mecânica dos fluidos e mecânica clássica, uma vez que se baseia na conservação da 

quantidade de movimento 

Os programas CFD se baseiam na discretização do domínio a ser estudado e 

das equações de conservação, resolvendo-as numericamente. Essa ferramenta 

permite que problemas sobre sem solução analítica sejam resolvidos numericamente, 

assim obtendo a tendência da solução para determinado problema. 

Essas ferramentas servem para análise comparativa entre as turbinas radial e 

axial. O objetivo, após a proposição de uma geometria radial para o rotor da turbina, 

é observar a viabilidade construtiva da substituição da turbina axial pela nova 

geometria radial gerada.  



 

 

ABSTRACT 
 

Gas turbines can be a solution for the energy distributed generation, once gas 

microturbines are a good example of it. The main goal of this monography is the 

comparison between the design of axial and radial turbines for microturbine 

applications, specifically in turbines derived from automotive engines 

turbocompressors. 

The analysis will be developed through the use o two methods: the velocity 

triangle and numerical simulation through commercial CFD programs. 

The velocity triangle is pointed as a semi-empiric method which relies 

strongly on the application of fluid mechanics and classic mechanics concepts. One 

evidence is that the method is based on Newton’s second Law of motion 

(conservation of Momentum). 

The CFD software discretize the dominium studied and applies the 

discretization in the conservation laws, solving them numerically. The CFD method 

allows that complex geometries or problems can be solved numerically, therefore 

pointing out the tendencies of the situation at hand. 

These methods are used for a comparison analysis between radial and axial 

turbines. The goal is to evaluate the practicability of the substitution of the current 

axial turbine for a radial turbine. In order to obtain the results, a new radial geometry 

is proposed and simulated.  
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1. INTRODUÇÃO 

 

Recentemente, foi evidenciada a grande dependência da geração de energia 

através de usinas hidrelétricas devido à crise energética brasileira. Esse cenário 

impulsionou a pesquisa por fontes alternativas de energia e o aprimoramento das 

fontes atuais otimizando processos e equipamentos. 

Apesar de ser apresentado regionalmente, o cenário mundial apresentou uma 

grande tendência de pesquisa no melhor aproveitamento das atuais fontes energéticas 

e desenvolvimento de novas fontes para futuras aplicações. Entretanto, a motivação 

do cenário mundial em direção a essas pesquisas foi a crescente demanda energética. 

Voltando ao cenário brasileiro, durante o apagão (nome dado a crise 

energética brasileira), houve a tentativa de aumentar a diversidade da matriz 

energética ao instalar usinas termelétricas e sistemas de cogeração para aumentar a 

eficiência dos insumos energéticos. Entretanto, termoelétricas tem elevado custo de 

implantação e há a necessidade de vários equipamentos de grande porte periféricos 

ao equipamento de geração de energia, a turbina.  

Contrapondo-se às usinas termelétricas e nucleares, a turbina a gás é mais 

compacta, podendo ter pequenas dimensões com aproveitamento de alguns kW, até 

grandes dimensões produzindo grandes quantidades de potência como 100 MW. 

Além disso, a instalação e implantação são mais rápidas e simples. 

A versatilidade de uma turbina a gás, em relação a dimensões e geração, a 

torna extremamente apropriada para a geração distribuída, ou seja, a geração de 

energia próxima ao local de consumo. 

As turbinas a gás tiveram sua primeira aplicação na aviação e só passaram a 

ter aplicações estacionárias para geração de energia elétrica após a segunda guerra 

mundial. O grande desenvolvimento das turbinas em suas aplicações aeronáuticas 

levou a produção de grandes potências disponíveis para trabalho ou geração de 

energia elétrica. 

Com base no cenário descrito, foi desenvolvida uma turbina a gás no LETE 

(Laboratório de Engenharia Térmica e Ambiental da Escola Politécnica da 

Universidade de São Paulo) a partir de um turbo-compressor automotivo. Entretanto 

esse conjunto funciona em torno de 100000 rpm, impossibilitando o acoplamento 
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direto desse conjunto a um gerador elétrico e, conseqüentemente, inviabilizando o 

aproveitamento energético. 

Logo, o próximo passo era viabilizar o acoplamento a um gerador elétrico. 

Esse passo deu origem ao desenvolvido do projeto de um segundo estágio de turbina, 

utilizado para a geração de energia elétrica. 

Esse trabalho se foca na análise desse segundo estágio para geração de 

energia elétrica. O objetivo é analisar todo o escoamento dentro da turbina visando 

melhora na eficiência e no processo de expansão dentro da turbina, e, 

conseqüentemente, uma maior potência de eixo disponível para geração de energia 

elétrica. Com estas metas em foco, há dois tipos de modelos a serem estudados, os 

modelos analíticos e os numéricos. 

Assim uma primeira análise de uma turbina deve ser feita considerando as 

velocidades de entrada e saída do fluido, e a rotação da turbina, caracterizando o 

estudo do triângulo de velocidades. A partir do triângulo de velocidades, pode ser 

obtido um trabalho específico dentro da turbina e, assim, obtém-se o valor da 

potência gerada por uma turbina utilizando esse modelo básico.  

O triângulo de velocidades pode ser caracterizado como um método semi-

empírico, sem grande profundidade de conhecimento do escoamento, entretanto se 

mostra um bom modelo para analisar uma turbina. 

Em contraste a este estudo, há o método numérico obtido a partir de modelos 

desenvolvidos em softwares CFD, que permitem uma análise mais aprofundada do 

escoamento, tornando mais evidentes qualidades de um projeto e possíveis 

melhorias. 

Os métodos numéricos apresentam algoritmos para solucionar numericamente 

as equações de Navier-Stokes, conjunto de equações diferenciais parciais sem 

solução analítica. Logo, fica clara a necessidade do uso da capacidade de 

processamento e armazenamento do computador para esses cálculos de escoamentos, 

que podem ter uma convergência demorada.  

 Apresentados os métodos, observa-se que haverá uma comparação entre os 

métodos e a viabilidade da utilização de ambos para obter conclusões com maior 

grau de confiabilidade, assim podendo inferir a viabilidade do triângulo de 
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velocidades como estudo inicial e o modelo CFD como uma análise mais 

aprofundada.  
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2. TURBINAS A GÁS, CICLOS TERMODINÂMICOS E PROJETO DE 

TURBINAS 

 

Com a intenção de uma melhor compreensão dos fenômenos característicos 

do problema estudado, é primordial fazer uma introdução da teoria envolvida na 

caracterização tanto da turbina a gás, quanto da turbina propriamente dita. Logo é 

necessário fazer uma introdução do funcionamento do ciclo Brayton e do triângulo 

de velocidades que são as teorias desenvolvidas e aplicadas largamente nessa área. 

 

2.1. Ciclo Brayton Padrão a ar e Ciclo Real 

 

 O funcionamento de uma microturbina a gás pode ser representada pelo ciclo 

Brayton, que é caracterizado por 4 processos idealizados: 

• 1-2: Processo de compressão Adiabático Reversível 

• 2-3: Processo de Absorção de Calor a pressão constante (processo isobárico) 

• 3-4: Processo de Expansão Adiabático Reversível (processo isentrópico) 

• 4-1: Processo de Rejeição de Calor a pressão constante (isobárico) 

Assim pode ser obtido os gráficos p-v e T-s, dispostos na fig. (2.1): 

 

 

Figura 2.1: Diagramas T-s e P-V de um ciclo Brayton  
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 Este ciclo também é conhecido como ciclo padrão-ar de uma turbina a gás, 

uma vez que os processos de uma turbina a gás real são: 

• 1-2: Processo de Compressão 

• 2-3: Processo de Combustão 

• 3-4: Processo de Expansão 

 

 

Figura 2.2: Exemplo de uma Turbina a Gás 

 

Comparando o ciclo padrão e o conjunto de processos que acontecem de fato 

em uma turbina a gás, percebe-se que o processo de rejeição de calor é introduzido 

com o objetivo de fechamento do ciclo, pois os gases saem da turbina diretamente a 

atmosfera a alta temperatura. 

Essa exaustão a alta temperatura possibilita que a energia desses gases de 

escape seja utilizada em trocadores de calor instalados em sistemas de refrigeração, 

assim atende uma demanda térmica associada. Assim as turbinas podem ser 

utilizadas em sistemas de cogeração, caracterizados por satisfazer uma demanda de 

energia elétrica e uma de carga térmica. 

Com o foco de analisar os componentes do ciclo padrão, tem de ser 

apresentada a primeira lei da termodinâmica. Esta também é conhecida como lei da 

conservação da energia e, para um volume de controle, é dada pela eq. (2.1), em que 

h é a entalpia específica, V é a velocidade, W é o trabalho específico e Q é o calor 

trocado por unidade de massa. 
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                          Q = �h� − h�� + 

� �V�� − V��� + W                                 (2.1) 

 

Aplicando esta fórmula para o compressor, tem-se a eq. (2.2), na qual se 

observa o uso do calor específico para aproximar a variação da entalpia. Os índices 1 

e 2 representam, respectivamente, os estados de entrada e saída do compressor: 

 

                          �
� = −�ℎ� − ℎ
� = −����� − �
�                          (2.2) 

 

Novamente aplicando a 1ª lei na câmara de combustão e na turbina, obtêm-se 

as eq. (2.3) e (2.4), nas quais os índices 3 e 4 definem os estados na entrada e saída 

da turbina, respectivamente. 

 

         ��� = �ℎ� − ℎ�� = ����� − ���                (2.3) 

 

                            ��� = �ℎ� − ℎ�� = ����� − ���                                  (2.4) 

 

Após aplicar a 1ª lei para esses componentes, é possível definir o rendimento 

de um ciclo termodinâmico. A eficiência termodinâmica de um ciclo é definida como 

a relação entre trabalho líquido obtido e a energia fornecida para a realização do 

ciclo. Da definição, conclui-se a eq. (2.5) fórmula matemática: 

 

     � = ����
��                          (2.5) 

 

Aplicando o balanço de energia dos componentes na fórmula anterior, obtém-

se a eq. (2.6): 

              � = ��� !" #�"��� $" %�
��� !" $�           (2.6) 

 

Substituindo a fórmula para um processo isentrópico, tem-se a eq. (2.7): 

 

    � = 1 − '

()�*"
� *⁄

              (2.7) 
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Onde: 

 

, = -!
-#                                                   (2.8) 

 

Ao observar a eficiência em função da relação/razão de pressão, infere-se 

que, quanto maior a razão de pressão, maior a eficiência do ciclo termodinâmico, 

portanto objetiva-se uma relação de pressão máxima para aumentar a eficiência do 

ciclo termodinâmico. Entretanto o aumento excessivo da razão de pressão leva a um 

baixo trabalho líquido, pois uma pressão elevada na entrada do combustor diminui a 

quantidade máxima de combustível injetado e, conseqüentemente, diminui o trabalho 

líquido produzido. 

Obviamente, há um desvio entre os processos de compressão e o de 

compressão isentrópico.  Partindo desse pressuposto pode ser definida uma eficiência 

isentrópica, a qual é dada pela eq. (2.9): 

 

��./�(011ã. = 23
2                                            (2.9) 

 

 A eficiência admite apenas valores menores do que 1, portanto pode ser 

inferido que o trabalho de compressão de um processo real é maior, uma vez que as 

irreversibilidades têm de ser vencidas. 

 Outro desvio é observado entre os processos de expansão real e isentrópico. A 

eficiência do processo é dada pela fórmula: 

 

�04�561ã. = 2
23                                           (2.10) 

 

Nota-se que o efeito é exatamente o oposto do observado para a compressão, 

o trabalho disponível no ciclo padrão não é totalmente aproveitado devido à presença 

de irreversibilidades no processo. 

A partir dessas eficiências isentrópicas, é possível relacionar os ciclos padrão 

e real. É importante salientar que essas eficiências são relativas aos processos de 
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compressão e expansão e não são referentes à eficiência do ciclo, que já foi definida 

anteriormente. 

Até aqui foram definidas as eficiências isentrópicas e a eficiência do ciclo 

padrão a ar. A eficiência do ciclo real tem uma pequena diferença. A energia 

fornecida ao ciclo provém da queima do combustível e, portanto, o calor fornecido 

pode ser dado pela eq. (2.11) na qual PCI corresponde ao poder calorífico inferior: 

 

�7 = 89  :;<                                              (2.11) 

 

 Assim a fórmula da eficiência do ciclo real é dada por: 

 

� = ����
/9 ∙->?                                                  (2.12) 

 

2.1.1. Parâmetros de uma turbina a gás: 

 

 Nesta seção, serão definidos alguns parâmetros muito comuns para a análise 

de uma turbina a gás real.  

 Primeiramente será definido o consumo específico de combustível de uma 

turbina a gás. O consumo específico é a relação entre a massa/vazão de combustível 

consumido na turbina e o trabalho de eixo disponível devido à queima do 

combustível. Matematicamente, a relação é: 

 

; = /@
� = /9 @

�9                                            (2.13) 

 

Outro parâmetro muito usado em turbinas é a relação combustível-ar. Esta 

relação é importante para avaliar o processo de combustão, uma vez que o excesso de 

ar garante uma combustão completa e também diminui a temperatura dos gases de 

saída do combustor.  

Ao queimar há a produção de gases como CO e NOx, poluentes que na fase 

de projeto devem ser evitados ao extremo. Entretanto uma alta temperatura no 

combustor promove uma produção maior de NOx, já uma temperatura muito baixa 

pode levar a maiores concentrações de CO e C. 
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Portanto, do ponto de vista de emissões de poluentes, a relação ar-

combustível tem de ser escolhida criteriosamente para um melhor desempenho da 

turbina e menor impacto ambiental da mesma. 

Assim define-se a relação ar-combustível como (eq.(2.14)): 

 

AB; =  /9 CD
/9 EFGH                                          (2.14) 

 

2.1.2.  Ciclo Brayton Aplicado a uma Microturbina a Gás sem Turbina de 

Potência 

 

Até aqui o ciclo foi apresentado de forma teórica, com foco nas equações do 

ciclo e seus processos. O ciclo Brayton foi aplicado em uma microturbina a Gás no 

LETE (Laboratório de Engenharia Térmica e Ambiental). 

Os parâmetros de projeto utilizados para a utilização no ciclo Brayton padrão 

a ar (estimativa inicial de qualquer turbina a Gás) foram [4]: 

• Razão de pressão: 1,8 

• Fluxo mássico: 0,2 kg/s 

• Rotação: 80.000 rpm 

• Temperatura na Entrada da Turbina: 973 K 

A microturbina a gás desenvolvida no LETE está representada na fig (2.3). 

 

Figura 2.3: Ciclo da Microturbina a Gás instalado no LETE 

 

Os processos são os mesmos que foram caracterizados na seção 2.1. 

Normalmente, o ciclo seria caracterizado por uma expansão na turbina produzindo 

trabalho, sendo que parte desse trabalho seria utilizado para compressão no 
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compressor e o excedente de trabalho seria utilizado para movimentação ou produção 

de energia (sendo este o trabalho líquido do ciclo). 

De acordo com [4], tem-se os seguintes valores para a microturbina a gás 

instalado no LETE, funcionando de acordo com o Ciclo Brayton padrão a ar (ciclo 

ideal), com as hipóteses de compressor e turbina isentrópicos já em regime 

permanente e calor específico constante. 

 

Tabela 2.1: Estados do segundo Ciclo Brayton (notação fig. (2.3)) 

  Temperatura (K) Pressão (Pa) Entalpia (kJ/kg) 
1 300 101325 300,4 
2 354,7 182385 355,5 
3 973 182385 1016 
4 837,1 101325 863,1 

 

Nas condições de projeto definidas, o rendimento do compressor e da turbina 

são 0,77 e 0,63. 

Em posse dos rendimentos isoentrópicos, a referência [4] fez duas análises 

dessa turbina instalada. A primeira mostra uma comparação entre o ciclo Brayton 

padrão a ar utilizando as hipóteses de compressor e turbinas isoentrópicos e cp 

contante e outra utilizando os rendimentos definidos pelo fornecedor: 

 

 

Figura 2.4: Gráfico Rendimento x Razão de Pressão 

 

Observa-se que o máximo rendimento seria obtido com uma razão de pressão 

em torno de 3, logo fica definida uma faixa de operação entre 1,8 e 3.  
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A segunda análise avalia o trabalho líquido em função da temperatura na 

entrada da turbina. Os resultados dispostos na fig. (2.5) mostram uma faixa de 

potência líquida em torno de 2 a 5 kW. 

 

 

Figura 2.5: Gráfico Potência Líquida x temperatura na Entrada da Turbina 

  

2.1.3. Ciclo Brayton Aplicado a uma Microturbina a Gás com Turbina de 

Potência 

 

O ciclo apresentado na seção 2.1.1 poderia ser utilizado para gerar 

eletricidade ou movimentar alguma carga. Entretanto a velocidade de rotação é muito 

alta para um dos aproveitamentos descritos, assim sendo inviável a utilização para 

esse fim sem a separação da expansão em estágios de alta e baixa pressão. 

Com a finalidade de se obter trabalho líquido, pode ser montado um segundo 

estágio de turbina, este trabalharia a rotações menores, adequando o acoplamento a 

geradores, por exemplo. 

Visando a essa utilização do trabalho líquido, foi estabelecido um novo 

estágio de turbina para a microturbina instalada no LETE-USP. O projeto desse 

estágio foi descrito em [4] e simulações de seu funcionamento usando programas 

CFD também foram realizados na referência.  

Com a introdução do novo estágio, tem-se o ciclo a seguir, já com a definição 

de alguns termos: 
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Figura 2.6: Ciclo da Microturbina a Gás com Turbina/Gerador de Potência 

 

A introdução de um novo estágio implica em alterações nos estados 

termodinâmicos e, conseqüentemente, nos fluxos de energia do próprio ciclo, pois o 

segundo estágio diminui a relação de pressão do gerador de gás (introduzido na fig. 

(2.6)). 

Os cálculos termodinâmicos de projeto foram definidos em [4] e estão 

representados a seguir: 

 

Tabela 2.2: Estados do Ar para Turbina com Gerador de Potência 

  Temperatura (K) Pressão (Pa) Entalpia (kJ/kg) 
1 300 101325 300,4 
2 372,9 182385 372,9 
3 973 182385 1016 
4 907,4 130445 941,9 
5 844,1 101325 870,8 

 

2.2. Triângulo de Velocidades  

 

O triângulo de velocidades é o método semi-empírico usado para avaliar, 

durante a fase de projeto, o trabalho que será produzido pela turbina, entretanto ele 

não descreve por completo o escoamento e todos os fenômenos físicos envolvidos no 

processo, por isso a necessidade de uma análise mais aprofundada utilizando 

programas CFD. 

Entretanto o triângulo de velocidades é uma ótima estimativa inicial e 

extremamente útil para a fase inicial de concepção de projeto. 
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2.2.1.  Triângulo de Velocidade aplicado a Turbinas Axiais 
 

 O primeiro passo é introduzir os dois componentes observados em um estágio 

de turbina, o estator e o rotor. O estator, conforme indica o próprio nome, não tem 

movimento rotativo, permanecendo estático, assim sua principal função é a de bocal, 

ou seja, acelerar o escoamento. Já o rotor é caracterizado pelo seu movimento 

rotativo e por transformar energia do fluido em trabalho útil no eixo. 

 O estágio de uma turbina está representado na fig. (2.7), onde N representa o 

estator (em inglês esse estágio é denominado ‘Nozzle’) e R representa o rotor. 

 

 

Figura 2.7: Exemplo de um Estágio de Turbina Axial 

 

 O estudo inicial de turbinas, tanto radiais quanto axiais, se baseia no triângulo 

de velocidades, no qual é realizado o estudo das componentes de velocidade em cada 

um dos estágios.  

 Em uma primeira instância, objetiva-se o entendimento dos fenômenos 

observados em cada estágio de uma turbina. 

 O gás após sofrer queima entra no estator com pressão estática P1, 

temperatura estática T1, e velocidade C1. Em seguida, sofre expansão para o estado 2 

caracterizado por P2 e T2 e, durante o processo, é acelerado para a velocidade C2, 

sendo que esta tem ângulo α2 devido à geometria das palhetas do estator.  

 Após a expansão no estator, o gás entra no rotor, cujo ângulo de entrada tem 

de ser apropriado para um bom fluxo do gás, sabendo que o gás entra com uma 

velocidade relativa ao rotor V2 e direção β2 em relação às pás do rotor. A velocidade 
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V2 e o ângulo β2 são obtidos a partir da operação vetorial a seguir, cujos vetores estão 

representados na fig. (2.8), acima da fórmula vetorial (eq.(2.15)): 

 

 

Figura 2.8: Triângulo de Velocidades na Saída do Estator 

 

I�JJJK = ;�JJJJK − LJJK                                              (2.15) 

 

 Ao passar pelo rotor o gás é defletido e expandido até o estado 3, 

caracterizado por P3 e T3, saindo com velocidade relativa às palhetas da turbina V3 e 

direção β3. Ao realizar a soma vetorial com a velocidade tangencial do rotor U, 

obtém-se C3 (velocidade absoluta do gás na saída do rotor) e o ângulo de saída α3, 

também conhecido como ‘swirl angle’. A soma vetorial está representada 

graficamente na fig. (2.9) e matematicamente na eq. (2.16). 

 

 

Figura 2.9: Triângulo de Velocidades na Saída do Rotor 

 

;�JJJJK = LJJK + I�JJJK                                            (2.16) 

 

 Em uma turbina de estágio único (ou o primeiro estágio de uma turbina com 

múltiplos estágios), o ângulo de entrada é nulo, ou seja, entra paralelamente a direção 

axial. Esse fato é descrito na eq. (2.17) e na fig. (2.10). 
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Figura 2.10: Velocidade na Entrada do Estator 

 

M
 = 0                                               (2.17) 

 

Entretanto, se o objeto de estudo tiver vários estágios de turbina, as variáveis 

de entrada serão iguais aos da saída do estágio anterior. Caso seja observado que os 

estágios tenham exatamente as mesmas características, é comum usar o termo 

repeating stage (estágio de repetição). 

Neste momento cabe ressaltar que U é a velocidade tangencial do rotor e, 

portanto, sua velocidade aumenta com o aumento da distância do centro. Logo, o 

triângulo de velocidades varia da raiz da pá até sua ponta.  

Para facilitar a análise, adota-se que o triângulo de velocidades é obtido para 

o raio médio da seção anelar e que esta simplificação representa de forma adequada o 

padrão médio dos fenômenos observados no fluxo de gás. Devido ao fato de que é 

utilizado o diâmetro médio nessa simplificação, o modelo tem maior precisão para 

pás curtas, uma vez que não há grande distância entre os extremos e o diâmetro 

médio. 

Ao observar a fig. (2.11) (Triângulo de Velocidades), pode ser obtida a 

variação de momento tanto na componente tangencial. A variação na componente 

tangencial é dada por Cw2 + Cw3, já na componente axial é dada por (Ca2 – Ca3). Essa 

variação no momento axial implica em uma força axial, entretanto essa variação não 

é observada na fig. (2.11), uma vez que é aplicada a hipótese de velocidade axial 

constante. 
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Figura 2.11: Triângulo de Velocidades para Entrada e Saída do Rotor 

 

 Assim, obtém-se que a relação entre velocidade axial e velocidade tangencial 

de rotação é dada por: 

 
O
>C = tan M� − tan S� = tan S� − tan M�                      (2.18) 

 

Aplicando a conservação do momento, obtém-se a seguinte relação para o 

trabalho específico nesse estágio da turbina: 

 

T1 = L ∙ �;2� + ;2�� = L ∙ ;5 ∙ �tan M� + tan M�� = L ∙ ;5 ∙ �tan S� + tan S�� 

(2.19) 

 

Aplicando a 1ª lei da termodinâmica: 

 

∆ℎ = �� ∙ ∆�V1 = L ∙ ;5 ∙ �tan S� + tan S��          (2.20) 

 

Lembrando que se trata da variação da temperatura de estagnação e de que os 

sinais são coerentes, uma vez que um decréscimo da temperatura implica em um 

trabalho negativo, ou seja, o trabalho é realizado pelo fluido. 

Conhecendo o triângulo de velocidades, conseqüentemente pode ser obtida a 

variação da temperatura de estagnação e, a partir dessa, pode ser obtida uma 

estimativa da relação de pressão de estagnação, baseando-se na eq. (2.21): 

 

∆�V1 = �V1 ∙ �V
 ∙ W1 − '-X!
-X%)

YZ%
Y [                            (2.21) 
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Na eq. (2.21), η0s é eficiência isentrópica total do estágio, uma vez que seu 

cálculo é feito com os valores de estagnação (também denominado total-to-total 

stage efficiency). 

 

2.2.1.1.  Adimensionais para Projeto de Turbinas 

 

 Agora serão descritos três adimensionais úteis no projeto de uma turbina. O 

primeiro é a denominado Coeficiente de Carga da Pá ou Coeficiente de Queda da 

Temperatura, e expressa a capacidade de trabalho de um estágio. A fórmula é dada 

pela eq. (2.22). 

 

\ = ���∆ X3
O$ = �>C�]^_ `$a]^_ `!�

O                                (2.22) 

 

O segundo adimensional é denominado grau de reação e representa a 

porcentagem da expansão que observada no rotor. Sua definição é dada em termos de 

temperatura estática ou entalpia. 

 

Λ =  $" !
 %" !                                                   (2.23) 

 

Este adimensional pode ser relacionado diretamente com o triângulo de 

velocidades, se Ca for constante e C1=C3. A fórmula pode ser reescrita: 

 

Λ = >C�]^_ `$"]^_ `!�
�O                                              (2.24) 

 

O terceiro adimensional é o Coeficiente de Fluxo dado por: 

 

b = >C
O                                                      (2.25) 

 

Após definir esses coeficientes, os ângulos dos gases podem ser escritos em 

função desses adimensionais: 
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tan S� = 

�c '


� \ + 2Λ)                                      (2.26) 

 

tan S� = 

�c '


� \ − 2Λ)                                      (2.27) 

 

Assim esses parâmetros adimensionais são fundamentais para o projeto de 

uma turbina, uma vez que a partir da definição deles pode ser obtida parte da 

geometria das pás das turbinas. 

Um exemplo do uso desses parâmetros para o rotor de uma turbina pode ser 

encontrado em [2]. Nesta referência, é dito que baixos valores dos coeficientes de 

queda de temperatura e de fluxo implicam em maiores eficiências isentrópicas, uma 

vez que as irreversibilidades por atrito são maiores conforme o aumento da 

velocidade. 

Obviamente objetiva-se a máxima eficiência possível, entretanto, ao diminuir 

ψ, há a necessidade de uma turbina com um número maior de estágios e, ao diminuir 

φ, precisa-se de uma área anelar maior, para diminuir a velocidade a axial (mantido o 

fluxo). Portanto a diminuição desses fatores implica em sérias conseqüências de 

projeto, uma vez que o número de estágios aumenta o custo da turbina, bem como o 

aumento da área anelar. Um exemplo dessa escolha pode ser visto ao comparar os 

requisitos de uma turbina aeronáutica e uma turbina de aplicação industrial.  

A eficiência não é 100% devido às perdas, ou mais rigorosamente devido às 

irreversibilidades presentes no escoamento. A estimativa dessas perdas é feita a partir 

de dois adimensionais o coeficiente de perdas no estator e o coeficiente de perdas no 

rotor. 

Conforme dito, as perdas levam a um aumento da entropia, o que caracteriza 

o desvio da idealização do fenômeno que ocorre na turbina, uma vez que o processo 

é idealizado como isentrópico. O processo na turbina pode ser caracterizado em um 

gráfico T-s. 
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Figura 2.12: Diagrama T-s dos Processos de uma Turbina 

 

Primeiramente sabe-se que a temperatura de estagnação antes e depois do 

estator é igual uma vez que não há troca de calor ou trabalho de eixo, entretanto há 

uma queda da temperatura estática devido à expansão observada no estator. Devido 

ao atrito, há uma queda na pressão de estagnação no estator. 

Assim pode ser definido o Coeficiente de perdas no estator da seguinte forma: 

 

ef =  $" g$
>$$ ���h      ij        kf = -X%"-X$

-X$"-$                               (2.28) 

 

Os coeficientes mostram a porção da energia que é degrada durante o 

processo de expansão no rotor.  

Após definir a expansão no estator, o gás é novamente expandido no rotor até 

a P3 e a temperatura T3. Supondo o processo ideal apenas no rotor, seria medida a 

temperatura T’’3 e, supondo processo isentrópico em todo o estágio da turbina seria 

observada T’3. 

Assim define-se o coeficiente de perda nos rotores como: 

 

el =  !" gg!
m!$ ���h      ij        kl = -X$Dn�"-X!Dn�

-X!Dn�"-!                            (2.29) 
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Observa-se uma diferença importante entre as fórmulas, o que explica o 

significado físico do coeficiente de perdas no rotor. O coeficiente expressa a parte da 

energia cinética relativa deixando o rotor.  

 

2.2.2.  Estágio de Admissão Parcial 

 

 Normalmente, a admissão nas turbinas é total, caracterizada pelo fato de que 

o fluxo é axissimétrico e todas as palhetas recebem a mesma vazão. Entretanto o 

estudo é focado em uma turbina de admissão parcial. 

 A admissão parcial é adequada para turbinas com baixas vazões de ar. Em 

turbinas de admissão parcial, apenas uma fração das palhetas recebe o fluxo em um 

determinado instante. 

 O triângulo de velocidades é calculado para admissões totais, portanto tem de 

ser feito o seguinte ajuste na vazão: 

 

o9 5p/.r.r5s = /9 ∙�tV
u                                             (2.30) 

 

Sendo θ definido como o ângulo de admissão. O valor do ângulo de admissão 

no caso é 180º. Logo, a vazão total considerada é o dobro da real. 

 A fig. (2.13) mostra como foi aplicada a admissão parcial: 

 

 

Figura 2.13: Estágio de Potência da Turbina a Gás – Admissão Parcial  
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2.2.3. Resultado do Triângulo de Velocidades 

 

 O segundo estágio da turbina tem os seguintes parâmetros: 

 

Tabela 2.3: Dados Geométricos da Turbina e Vazão Mássica 

Dados Geométricos da Turbina 
α1 (º) 0º β2 (º) 35 
α2 (º) 70º β3 (º) 77 
α3 (º) 60º m (kg/s)  0,36  

Raio Médio (mm) 67 Altura das Pás (mm) 30 
pitch estator (mm) 13,6 pitch rotor (mm) 11,4 

pás estator 31 pás rotor 37 
 

Primeiramente tem de ser definida a velocidade axial de entrada (neste caso, a 

velocidade axial é igual ao módulo da velocidade, pois α1 é nulo) e esta é definida 

através das eq. (2.31), (2.32) e (2.33): 

 

v
 = �%
l∙ %                                               (2.31) 

 

B = 2w A/ ∙ ℎ                                            (2.32) 

 

;5
 = /9
x%∙y                                               (2.33) 

 

Inicialmente, admite-se que a velocidade axial é conservada. Portanto: 

 

;z
 = ;z�                                              (2.34) 

 

Aplicando o triângulo de velocidades, obtém-se: 

 

;2� = ;z
 ∙ tan M�                                       (2.35) 

 

A 1ª lei da termodinâmica pode ser aplicada e, portanto, podem ser obtidas as 

seguintes eq. (2.36), (2.37) e (2.38): 
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∆{�
� = |>}$$a>~$$�"|>}%$a>~%$�
�                              (2.36) 

 

∆�
� = ∆�E%$
��                                               (2.37) 

 

�� = �
 − ∆�
�                                           (2.38) 

 

Com a variação de temperatura em mãos, pode ser obtida a queda na 

temperatura na saída do estator para um processo isoentrópico, utilizando a eficiência 

isentrópica igual a 0,75. A metodologia foi obtida da ref.[4]:, portanto maiores 

informações sobre a metodologia podem ser obtidas nessa referência. 

 

∆�
�3 = ∆ %$
�n3�C�FD                                            (2.39) 

 

��1 = �
 − Δ�
��                                         (2.40) 

 

�� = �
 ' $3 % )
�

�Z%                                         (2.41) 

 

v� = �$
l∙ $3

                                               (2.42) 

 

;z� = /9
x$∙y                                              (2.43) 

 

;2� = ;z� ∙ tan M�                  (2.44) 

 

Esse cálculo é feito até que a velocidade axial convirja. Após a convergência 

do cálculo ser observada, obtém-se a velocidade na saída do estator.  

O cálculo foi desenvolvido apenas para o estator, no qual o referencial estava 

estático. Entretanto o cálculo não é válido para as palhetas do rotor, uma vez que o 

referencial do rotor é solidário ao movimento do rotor./ 
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Para contornar o problema, os cálculos são executados para um referencial 

solidário ao rotor, logo ele tem a mesma velocidade angular do rotor. Ao mudar o 

referencial, pode se aplicar o mesmo cálculo aplicado para o estator, utilizando a 

velocidade relativa V2 e o ângulo β2. 

Aplicando as equações e hipóteses mencionadas para o cálculo do estator, 

tém-se as seguintes equações: 

 

;z� = ;z�                                               (2.45) 

 

;2� = ;z� ∙ tan M�                                         (2.46) 

 

I2� = ;2� + L                (2.47) 

 

Redefinindo a energia cinética: 

 

∆{��� = |>}!$a>~!$�"|m}$$a>~$$�
�                                (2.48) 

 

 Aplicando a 1ª lei da termodinâmica: 

 

∆��� = ∆�E$!
��                                               (2.49) 

 

�� = �� − ∆���                                            (2.50) 

 

∆���3 = ∆ $!
�n3�C�FD                                             (2.51) 

 

��1 = �� − Δ����                                          (2.52) 

 

�� = �� � !3 $3
�

�
�Z%

                                           (2.53) 
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v� = �!
l∙ !3

                                                 (2.54) 

 

;z� = /9
x!∙y                                                (2.55) 

 

;2� = ;z� ∙ tan M�                                         (2.56) 

 

A partir das velocidades obtidas, obtém-se a potência produzida: 

 

∆� = 89 ∙ �;2� + ;2�� ∙ L                                  (2.57) 

 

Deve ser salientado que a pressão p3 é próxima ou igual a atmosférica, pois o 

gás é descarregado no ambiente. Para realizar os cálculos, foi produzida uma rotina 

em Matlab (a rotina está apresentada no anexo A) e os resultados estão dispostos na 

tab. (2.4). 

 

Tabela 2.4: Resultado do Triângulo de Velocidades 

Resultados do triângulo de Velocidades 
Cα2 (m/s) 50,52 
Cw2 (m/s) 138,79 
Cα3 (m/s) 55,85 
Cw3 (m/s) 171,50 
W (kW) 3,265 
P3 (bar) 1,009 

 

2.2.4. Triângulo de Velocidades aplicado a Turbinas Radiais (Projeto 

Preliminar de Turbinas Radiais) 

 

2.2.4.1. Parâmetros Básicos Iniciais 

 

O projeto inicial de turbinas tanto radiais quanto axiais visa à definição de 

alguns parâmetros geométricos básicos da turbina conforme explanado em [7]. 

Deste ponto em diante, será utilizada a seguinte nomenclatura indicial: índice 

1 corresponde a entrada do estágio da turbina; índice 2 corresponde a entrada do 

rotor; e o índice 3 corresponde a descarga do rotor. 
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A primeira hipótese tomada é de que há um conhecimento (ou demanda) da 

potência que a turbina terá de fornecer. Neste caso, como a turbina proposta 

substituirá uma turbina instalada cuja potência é conhecida, a imposição da potência 

é um método apropriado para o desenvolvimento desse projeto. A potência é 

matematicamente descrita pela fórmula: 

 

�9
/9 = ℎV
 − ℎV� = *l

*"
 ∙ ��V
 − �V��                             (2.58) 

 

Dividindo a equação por h01, tem-se o adimensional de projeto denominado 

razão de potência (nondimensional power ratio [7]): 

 

�� = �9
/9 ∙�X% = 1 −  X!

 X%                                           (2.59) 

 

Conforme descrito anteriormente, a potência, o fluxo mássico e o estado de 

entrada na turbina já são conhecidos, portanto esse adimensional pode ser calculado 

diretamente. Esse adimensional será utilizado como base para os próximos cálculos. 

Caso esses dados não sejam conhecidos, a referência [7] propõe uma solução 

iterativa para o cálculo desse parâmetro SW. 

A razão de potência pode ser relacionada à razão de estágio de pressão 

através da total-to-static efficiency (eq. (2.60)). 

�r1 = 
"�X!�X%

"'�X%�! )

�YZ%�Y
                                                 (2.60) 

 

2.2.4.2. Projeto da Seção de Entrada do Rotor 

 

Para definir os parâmetros que se quer obter, eles estão indicados na fig. 

(2.14). Essa figura define as principais dimensões do rotor sem especificar a 

geometria das pás (isto é, sua curvatura). Desta, extraí-se que o ar é admitido no rotor 

radialmente. Essa condição de admissão é favorável do ponto de vista estrutural, de 

acordo com [7]. 
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Figura 2.14: Geometria Básica do rotor Radial 

 

No ponto de máxima eficiência, procedimentos iniciais de projeto assumem 

que a velocidade relativa é paralela a pá radial, assim o triângulo de velocidades é 

apropriado para o projeto inicial. Entretanto, o triângulo de velocidades para a 

entrada do rotor é descrito genericamente pela fig. (2.15). 

 

 

Figura 2.15: Triângulo de Velocidades para a Seção de Entrada do Rotor 

 

Na fig. (2.15), observam-se as variáveis α2, que corresponde ao ângulo entre a 

velocidade absoluta de entrada C2 e a direção radial, β2, que correspondem ao ângulo 

entre a velocidade relativa W2 e a direção radial, U corresponde a velocidade 

tangencial das pás, Cθ2, que corresponde a projeção da velocidade absoluta do gás na 

direção tangencial. 
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A partir das definições das variáveis, pode ser escrita a equação de Euler 

aplicada a turbomáquinas. A equação de Euler se baseia no princípio da conservação 

da quantidade de movimento e, com base nesse princípio, pode ser escrita uma 

fórmula para a potência gerada em uma turbomáquina. 

 

�9
/9 = L� ∙ ;u� − L� ∙ ;u�                                     (2.61) 

 

É comum utilizar a hipótese de que o escoamento na saída do rotor é axial, 

portanto desprezando outros efeitos como o ‘swirl’, caracterizado pela 

rotacionalidade. A eq. (2.61) pode ser simplificada, uma vez que não há projeção da 

velocidade absoluta C3 (eq. (2.62)), na direção tangencial. 

 

;u� = 0                                                 (2.62) 

 

�9
/9 = L� ∙ ;u�                                              (2.63) 

 

Substituindo no adimensional Sw, obtém-se: 

 
O$∙>�$
5X%∙5X% = �}

*"
                                               (2.64) 

 

Após a definição das hipóteses feitas até o momento e das equações obtidas, 

há a necessidade de calcular os parâmetros geométricos do rotor, os quais podem ser 

definidos com o triângulo de velocidades, uma vez que esses parâmetros são 

necessários para o projeto tanto do rotor quanto do estator. 

Do triângulo de velocidades obtém-se a eq.(2.65): 

 

;u� = L� + ;/� ∙ tan S� = L� + >�$
]^_ z$ ∙ tan S�                     (2.65) 

 

Essa equação pode ser reescrita para formar uma equação de segundo grau 

em relação à tangente de α2.  
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tan� M� ∙ '1 − O$>�$
5X%$

5X%$
>$$ ) − tan M� tan S� − O$>�$

5X%$
5X%$
>$$ = 0             (2.66) 

 

O número de Mach de estagnação na entrada o rotor é definido em [7], 

conforme a eq. (2.67). O número de Mach na entrada do rotor pode ser escrito em 

função do número de Mach da estagnação, como mostrada na eq. (2.68), desde que 

se assuma que o escoamento no estator é adiabático, hipótese já utilizada no 

triângulo de velocidades da turbina axial. 

 

o�V� = >$
5X%                                              (2.67) 

 

o��� = �5X$$
'
"YZ%

$ �5X$$ )                                       (2.68) 

 

A eq. (2.66) só pode ser resolvida se o valor do número de Mach atingir 

valores suficientes para que sejam obtidas raízes de números positivos (raízes não 

complexas). Logo, o valor mínimo do número de Mach é limitado a partir da eq. 

(2.69), proveniente do delta de Báskara. 

 

tan� S� + 4 ∙ '1 − O$>�$
5X%$ ∙ 5X%$

>$$ ) ∙ O$>�$
5X%$ ∙ 5X%$

>$$ = 0                    (2.69) 

 

Substituindo (2.64) em (2.69), obtém-se: 

 

4 ' �}
*"
 ∙ 5X%$

>$$ )� − 4 ∙ �}
*"
 ∙ 5X%$

>$$ − tan� S� = 0                      (2.70) 

 

A solução de (2.70) é dada por: 

 

>$$
5X%$ = �}

*"
 ∙ � ��� `$

a��� `$                                           (2.71) 

 

A eq. (2.71) define o mínimo valor de Mach para uma razão de potência Sw 

especificada e um valor ótimo de ângulo relativo β2. Em [7], é exposto que o efeito 
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do ângulo relativo não é tão significativo quanto o da razão de potência Sw. Essa 

conclusão pode ser facilmente obtida pelo fato de que a influência do ângulo está 

limitada pela função cosseno, enquanto a razão de potência é diretamente 

proporcional ao número de Mach. 

Com a definição do número de Mach, o triângulo de velocidades na entrada 

do rotor está completamente desenvolvido. O ângulo de entrada do rotor (α2) pode 

ser obtido através da eq. (2.66) ou, caso o projeto se baseie no valor mínimo do 

número de Mach, o ângulo de entrada no rotor (α2) pode ser definido pela eq. (2.72).  

Entretanto, teriam de ser definidos o número de Mach na seção e o ângulo β2. 

Na seção 2.2.4.3, serão mostradas correlações para a obtenção do ângulo ótimo β2 

(ou α2). 

 

tan M� = ��_ `$
��� `$"
                                              (2.72) 

Além disso, pode ser definido o adimensional para o mínimo número de 

Mach: 

 

' O$
5X%)� = ' 


*"
) ∙ �}
��� `$                                         (2.73) 

 

2.2.4.3. Cálculo do ângulo relativo de entrada no rotor ótimo 

 

O próximo passo, após a definição do triângulo de velocidades, é a definição 

do ângulo ótimo de entrada do escoamento. Uma breve discussão disso pode ser 

encontrada em [7]. 

Existem várias metodologias para a definição desse ângulo. Nesta seção, 

serão discutidas três expressões para a definição do ângulo de entrada. 

A primeira foi definida para escoamento ínviscido bidimensional em um rotor 

de um compressor centrífugo, o que é equivalente ao caso estudado, apenas alterando 

os sentidos dos vetores. Para esse caso, foi definida a seguinte relação: 

 

;u� = L� ∙ '1 − V,t�∙�
�� )                                         (2.74) 
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Porém, da eq. (2.65),sabe-se que: 

 

;u� = L� ' ]^_ z$
]^_ z$"]^_ `$)                                        (2.75) 

 

Combinando as eq. (2.74) e (2.75), para a condição de número de Mach 

mínimo (descrita pela eq. (2.72)), obtém-se: 

 

cos S� = '1 − V,t�∙�
�� )                                         (2.76) 

 

Reescrevendo, relaciona-se o número de pás com o ângulo de entrada α2: 

 

cos� M� = V,t�∙�
�∙��                                              (2.77) 

 

Outra expressão é dada pela eq. (2.78): 

 

�� = 2 ∙ w ∙ tan M�                                           (2.78) 

 

Essa expressão é aplicável apenas se os efeitos da incidência induzida forem 

desprezados. 

A última expressão propõe alterações na correlação descrita pela eq.(2.78), 

pois defendia que esta resultava em um número excessivo de pás.  

 

�� = �
�V ∙ �110 − M�� ∙ tan M�                                 (2.79) 

 

Essas expressões permitem que, fixado o número de pás do rotor, sejam 

obtidos os ângulos de entrada do rotor (α2) e relativo de entrada (β2). 

O método desenvolvido para a obtenção da eq. (2.77) considerou um 

escoamento invíscido e bidimensional. Ao usar essa consideração, os valores podem 

ser maiores do que o ponto ótimo real, conforme discutido em [7]. 
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2.2.4.4. Projeto da Seção de descarga/saída do rotor 

 

Bem como o que foi descrito para o item anterior, será descrito um 

procedimento que procura definir um as variáveis geométrica da seção de descarga 

do rotor, baseando-se no fato de que, com o valor mínimo do número de Mach, seja 

alcançado um valor para o fluxo mássico adimensional. 

Conforme descrito anteriormente, uma das hipóteses é de que o escoamento 

na saída do rotor é axial, ou seja, não há ‘swirl’ na seção de saída do rotor. 

Fundamentando-se nessa hipótese, pode ser escrita uma equação para o número de 

Mach para a velocidade relativa do escoamento. 

 

o′�� = o�� + u∙��$

"�$ ∙ 


�! '1 + *"

� ∙ o��)V,  ¡ X%

 X!
-X%
-!                      (2.80) 

 

Na qual θ é o fluxo mássico adimensional dado por: 

 

¢ = /9
xX%5X%�($$                                             (2.81) 

 

Para utilizar a eq. (2.80), tem de ser definidas as relações entre pressões, a 

qual pode ser definida a partir da especificação da eficiência total-to-static da 

turbina. 

 

' -!
-X%)

YZ%
Y = 1 − 
"�X!�X%��3 = 1 − �£

��3                                 (2.82) 

 

O projeto se baseia na especificação do triângulo de velocidades. Para obter o 

triângulo de velocidades será definida a razão de velocidades: A referência [7] 

recomenda que esse valor seja igual ou próximo a 2. 

 

�l = �!3
�$                                                (2.83) 
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Após a definição desse adimensional, o número de Mach da velocidade 

relativa na seção de descarga pode ser reescrita. 

 

o′�� = �l�og��  $
 X$

 X$
 X!

 X!
 !                                      (2.84) 

 

A relação entre as temperaturas de estagnação e estática na saída do rotor são 

dadas por: 

 

 !
 X! = 1 − *"


�
�!$ ��� `!$

5X!$                                       (2.85) 

 

Da relação de temperaturas, pode ser utilizada a eq. (2.86): 

 

�!
5X! = �l �$

5X% ¡ X%
 X!                                         (2.86) 

 

Portanto o número de Mach da velocidade absoluta na seção de descarga é 

dado pela eq. (2.87). 

 

o� = o�g cos S�                                         (2.87) 

 

Utilizando essas equações o triângulo de velocidades está definido. 

 

2.2.4.5. Cálculos da Geometria do Rotor através de Adimensionais 

 

O triângulo de velocidades na seção de descarga do rotor foi definido através 

da adimensionalização dos módulos dos vetores velocidade dividindo-os pela 

velocidade do som da estagnação a03 ou pela velocidade do som a3. 

Conforme definido, a temperatura de estagnação é definida através da razão 

de potência SW, os vetores velocidade da seção de descarga podem ser modificados 

de tal forma que sejam adimensionalizados pela velocidade do som de estagnação ma 

seção de entrada do rotor. 



33 

 

A primeira definição da geometria é a razão dos raios do rotor dada pela 

fórmula: 

 

(!3
($ = O!

5X%
5X%
O$                                           (2.88) 

 

Para o caso de trabalho, no qual o mínimo número de Mach é utilizado, a 

razão de raios é caracterizada pela eq. (2.89): 

 

'(!3
($ )� = �l� 
"��� `$


a��� `$ sin� S�                              (2.89) 

 

A razão dos raios é uma função linear da razão de velocidade relativa para 

quaisquer ângulos relativos de entrada e de descarga especificados, uma vez que a 

condição de mínimo número de Mach seja satisfeita. 

Outra forma de escrever a razão de raios é da seguinte forma: 

 

(!3
($ = >G!

O$ tan S�                                       (2.90) 

 

O último parâmetro geométrico que precisa ser calculado é a altura b2 na 

seção de admissão do rotor. Esse parâmetro é obtido através do adimensional b2/r2. 

A relação de áreas no rotor pode ser determinada com a aplicação da equação 

da continuidade entre as seções de entrada e saída do rotor. Os números de Mach são 

conhecidos nas duas seções o adimensional θ (definido pela eq. (2.81)) pode ser 

caracterizado nas seções de entrada e saída do rotor pelas eq. (2.91) e (2.92). 

 

¢� = cos M� o� '1 + *"

� o��)

ZY¥%
$�YZ%�                             (2.91) 

 

¢� = o� '1 + *"

� o��)

ZY¥%
$�YZ%�                                 (2.92) 

 

Em posse das equações, pode ser escrita a relação de áreas representada na 

eq. (2.93) 
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y!
y$ = u$xX$5X$

u!xX!5X! = u$xX$
u!xX! ¡ X%

 X!                                   (2.93) 

 

Para determinar tal relação é necessário obter a relação entre as densidades 

que pode ser expressa pela eq. (2.94): 

xX$
xX! = -X$

-X!
 X!
 X$ = -X$

-X%
-X%
-X!

 X!
 X%                                    (2.94) 

 

A definição do termo P02/P01 passa pela especificação da eficiência o estator 

que é caracterizada pela eq. (2.95): 

 

�f = 
" �$�X%

"' �$�X%)

YZ%Y
                                         (2.95) 

 

Finalmente, a partir da equação de estagnação entre P02/P2 obtém-se a relação 

P02/P01. Assim, define-se a relação entre áreas, a qual é utilizada na eq. (2.96) para 

determinar b2. 

 

¦$
($ = 


� '(!3
($ )� �1 − §��/ y!

y$                                 (2.96) 

 

Assim o projeto das dimensões iniciais está determinado. Entretanto ainda é 

necessária a verificação do ângulo absoluto α3, o qual tem de ser menor ou igual a 

10° para o funcionamento adequado da turbina radial.  

Essa verificação é simples sendo feita através do triângulo de velocidades, o 

qual necessita de dois parâmetros para ser definido: a velocidade relativa e a 

velocidade tangencial. A velocidade relativa pode ser definida pelo ângulo relativo 

de saída (β3) e pela projeção da velocidade na direção axial, que pode ser obtida pela 

vazão mássica. Já a velocidade tangencial é obtida através da rotação (um dos dados 

de entrada do projeto) e dos raios da seção de descarga. 
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Em suma, o projeto está completo, porém ainda há a necessidade de definir a 

geometria da pá, que, se mal projetada, pode levar a uma baixa eficiência da turbina. 

Logo, a definição do formato da pá é fundamental para um bom projeto da turbina. 

 

2.2.5. Resultados do Método de Triângulo de Velocidades para Turbinas 

Radiais 

 

A aplicação do método sugerido por [7] foi implementado através de uma 

planilha em Excel. O projeto se inicia com a definição de alguns parâmetros que 

possibilitam os cálculos, entretanto, nesse caso, como o objetivo é substituir a atual 

turbina axial, os parâmetros de potência, rotação e vazão será iguais aos da turbina 

axial instalada atualmente no LETE. 

O primeiro parâmetro fixado foi a potência gerada e a potência estimada foi 

de 2 kW. A vazão, em um primeiro passo do projeto, será mantida igual à obtida 

através dos testes. A vazão atual medida no laboratório é da ordem de 0,16 kg/s e, 

portanto, esse será o valor utilizado. 

A rotação atual de operação da turbina é de 10000 rpm , entretanto o projeto 

anterior foi realizado para uma rotação de 15000 rpm [4]. Como parâmetro de 

projeto, será admitido o valor de 10000 rpm, observado durante a operação da 

turbina axial. 

De acordo com medições feitas no LETE, os gases de combustão entram no 

gerador de potência com temperatura de 873,15 K (ou 600ºC), que é um dos dados 

de entrada do projeto inicial da turbina. 

Uma das hipóteses simplificadoras adotadas foi a de gás perfeito. Nesse ponto 

é importante salientar que os combustores de turbinas a gás trabalham com grande 

excesso de ar. Portanto, é razoável utilizar a hipótese de que a relação de calores 

específicos (k) é igual a 1,4; valor correspondente para o ar. 

Um resumo das constantes utilizadas é a apresentada na tabela (2.5). 
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Tabela 2.5: Constantes do Projeto da Turbina Radial 

Constantes do Projeto 
Temperatura 01 (K) 873,15 

Vazão em massa (kg/s) 0,16 
Rotação (rpm) 10000 
Potência (kW) 2 

Relação de Calores específicos  1,4 
 

Para completar o projeto, alguns valores tiveram de ser adotados ou 

estimados para que se obtivessem parâmetros compatíveis com os desejados. Dois 

parâmetros que precisam ser definidos são o número de pás do rotor e o ângulo 

relativo na seção de descarga do rotor. O último, de acordo com [7], tem de estar 

entre -55º e -70º, entretanto o valor ideal tem de ser definido pelo projetista. Já para o 

número de pás, não há nenhum tipo de orientação e cabe ao projetista obter um valor 

razoável. 

Obviamente trata-se de um processo iterativo, em que o projetista altera os 

parâmetros até chegar ao ponto que julgue estar satisfatório. 

Um parâmetro construtivo limitado pelas instalações é o raio r3h que 

corresponde a raio interno da coroa circular da seção de descarga do rotor radial. 

Esse raio é limitado pelo eixo e sua respectiva fixação no rotor e, para o projeto da 

turbina atual será adotado o mesmo eixo do projeto da turbina axial. 

O valor da relação entre velocidades relativas (WR) é fixado em 2, conforme 

aconselhado por [7]. Entretanto, esse valor pode ser alterado pelo projetista, caso este 

julgue necessário. 

Para avaliar a largura da seção de admissão do rotor, faz-se necessário estimar 

dois parâmetros de eficiência dos processos envolvidos no estágio da turbina.  

O primeiro é a eficiência do estator, a qual foi avaliada em 77%, uma vez que 

este é um valor próximo do avaliado para a turbina axial. O segundo é a total-to-

static efficiency avaliada em 70%, pois a eficiência do rotor atual foi avaliada em um 

valor próximo desse. 

Esses parâmetros estão representados na tabela (2.6). 
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Tabela 2.6: Variáveis do Projeto de uma Turbina Radial 

Variáveis do Projeto 
Número de pás 7 

Relação entre velocidades relativas 2 
Eficiência total-to-static 0,7 

Eficiência do Estator 0,77 
Ângulo Relativo na seção de Descarga(º) -60 
Raio Interior da seção de descarga (mm) 15 

 

Finalmente, após a definição dessas constantes e variáveis, define-se a 

geometria básica do rotor. Esses parâmetros estão dispostos na tabela (2.7). 

 

Tabela 2.7:  Parâmetros Geométricos da Turbina Radial 

Dimensões e Ângulos da Turbina Radial 
Raio da seção de entrada (mm) 126,13 

Largura da seção de Entrada (mm) 16,51 
Raio Externo da seção de Descarga (mm) 66,48 
Raio Interno da seção de Descarga (mm) 15,00 

Ângulo de Entrada α2 (º) 67,91 
Ângulo Relativo de Entrada β2 (º) -44,17 
Ângulo Relativo de Saída β3 (º) -60,00 

 

2.2.6. Configurações de rotor 

 

Em [11], são apresentados quatro tipos de configurações de rotores: rotor 

bidimensional (ou também denominada radial fibred rotor), quase tridimensional, 

tridimensional sem inducer e tridimensional com inducer. A fig. (2.16) representa os 

possíveis tipos de rotores. 

O rotor bidimensional é caracterizado pela pá ser radial, ou seja, a direção da 

pá é radial em todas as seções perpendiculares ao eixo axial, já a pá tridimensional 

não segue a direção radial ela varia conforme sua posição radial, sendo uma 

combinação entre a direção radial e a tangencial. 

O rotor tridimensional apresenta maiores eficiência, entretanto a sua 

fabricação é muito mais complicada, sendo necessária a opção entre uma fabricação 

mais fácil e um rotor com maior eficiência. 
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Figura 2.16: Configurações de Rotores Axiais 

 

Além disso, rotores com configuração bidimensional ocupam uma menor 

distância axial, caracterizados, portanto, por serem mais compactos. 

As informações qualitativas sobre a configuração do rotor servem de base 

para a escolha do rotor mais apropriado. Um dos fatores mais importantes nesse 

projeto é a viabilidade da fabricação do rotor, logo o rotor mais apropriado é o rotor 

bidimensional. Definido o rotor, há a necessidade de definir geometricamente as 

palhetas do rotor radial. 

 

2.2.7. Projeto das Palhetas para Rotores Bidimensionais 
 

A primeira etapa do projeto do rotor da turbina foi a definição de parâmetros 

geométricos básicos do rotor da turbina, como diâmetros da seção de descarga, 

largura e diâmetro da seção de admissão do rotor, bem como os ângulos das pás nas 

seções de admissão e saída do rotor. 

Entretanto ainda há a necessidade de um projeto mais detalhado da geometria 

das palhetas do rotor radial. Nessa seção, será descrito o projeto das palhetas pelo 

método das Projeções Bidimensionais, proposto em [12]. 

A geometria das palhetas pode ser vista pela projeção em dois planos: r-z ( 

também denominado meridional) e θ-z em um raio de referência, rref. Essas projeções 

estão representadas nas fig. (2.17) e (2.18). 
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Figura 2.17: Projeção da geometria da palheta no plano r-z (plano Meridional) 

 

Na fig. (2.17), observam-se as linhas do shroud (ponta da palheta) e do hub 

(base da palheta). O ângulo ψ é o ângulo de cone, definido como ângulo entre um 

ponto das curvas (tanto do hub quanto do shroud) e o eixo z. Outra interpretação 

seria o ângulo que a reta tangente (ou primeira derivada) de um ponto dessas curvas 

determina ao encontrar o eixo z. 

Bem como foi definido para o plano meridional, há um ângulo característico 

denominado camber angle. Esse é o ângulo que os pontos da camberline (projeção 

da palheta no plano rrefθ-z) fazem com o eixo axial, assim uma interpretação igual à 

realizada para o ângulo de cone pode ser feita. 

A principal característica do rotor é simetria axial, e uma das conseqüências 

desse aspecto é uma única projeção no plano meridional, de forma mais direta, todas 

as pás do rotor são iguais. Entretanto, para que seja obtida apenas uma única 

camberline, há necessidade de que as pás sejam radiais em todas as seções normais 

ao eixo axial. O tipo de turbina descrito acima é comumente descrito como radial 

fibred. Esse tipo de projeto é muito usado, pois não introduz tensões por flexão 

centrífuga. 
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Figura 2.18: Projeção da Geometria da palheta no plano θ-z 

 

Até aqui foram definidas três curvas, a curva da ponta da pá, a curva da base 

rotor e a camberline e a definição dessas três curvas formam a geometria da palheta. 

 

 
Figura 2.19: Variação dos elementos da pá ao transladar dz 

 

A fig. (2.19) mostra um elemento da pá AB, localizado pela coordenada z e 

pela posição angular θ. Como se trata de um perfil de pá radial, a projeção dos pontos 
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AB em um cilindro é o ponto E. Ao translada dz na direção axial, a posição angular 

nessa seção é θ+dθ, novamente a projeção dos pontos CD em um cilindro de raio de 

referência é o ponto F. A reta formada por EF é a direção da camberline e a reta 

formada por BD é a direção do elemento de pás para um raio arbitrário r1. O ângulo 

da camberline é φ1, o qual está definido na fig. (2.19) e o ângulo da palheta é β1.  

A partir das definições acima, a geometria da camberline pode ser 

relacionada com o ângulo da palheta (β). De acordo com [12], para qualquer posição 

axial, o camber angle para o raio de referência pode ser descrito pela eq. (2.97) 

 

]^_ cDn@
]^_ c = pu

p©                                             (2.97) 

 

Assim pode se escrever a eq. (2.98) que relaciona o estado de referência e um 

raio r1 arbitrário: 

 

]^_ c%
(% = ]^_ cDn@

(Dn@                                           (2.98) 

 
O ângulo β1 é definido pela eq. (2.99): 

 

tan S
 = (%pu
¡p(%$ap©$                                          (2.99) 

 
Da fig. (2.18), pode ser obtida a Eq. (2.100), aplicando a definição de 

cosseno: 

 

cos \
 = p©
¡p(%$ap©$                                        (2.100) 

 
Combinando as eq. (2.97) a (2.100), obtém-se: 

 

tan S
 = tan b
 tan \
                                   (2.101) 

 

Há um caso que tem de ser destacado. Na seção de descarga da turbina, o 

ângulo de cone é nulo e, portanto, observa-se a relação: 
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tan S
 = tan b
                                          (2.102) 
 

Combinando a eq. (2.102) com a eq.(2.98), obtém-se: 

 

]^_ `
( = ]^_ `Dn@

(Dn@                                             (2.103) 

 
Após a definição das linhas a serem determinadas, é necessário definir uma 

fórmula matemática que caracterize essas três linhas. Os valores previamente 

definidos para o rotor (ângulos da pá, dimensões) são as condições de contorno 

impostas para a determinação dos coeficientes da equação analítica que definirá essas 

curvas. Um maior aprofundamento sobre o assunto pode ser obtido em [12].  

Para o projeto da pá, será utilizada a eq. (2.104) em sua forma geral: 

 

'©a5
¦ )� + '4a�

p )ª = 1                                   (2.104) 

 

Na eq. (2.104), x é o raio para as curvas da ponta da pá e da base do rotor e 

rrefθ para a camberline. Os coeficiente a,b,c,d são definidos a partir das condições de 

contorno para x e x’ nos pontos z1 e z2. Os parâmetros p e q são escolhidos pelo 

encarregado de realizar o projeto, sendo uma boa idéia variá-los e obter várias curvas 

analíticas que satisfaçam as condições de contorno pré-estabelecidas. 

O primeiro passo é derivar a equação na sua forma genérica, uma vez que a 

derivada de uma função corresponde à tangente no ponto em que a derivada foi 

calculada.  

 

p4
p© = − �

ª
p
¦ '©a5

¦ )�"
 '4a�
p )
"ª

                          (2.105) 

 
Trata-se do projeto de uma turbina radial, portanto, para as linhas de shroud e 

hub, sabe-se que x2’=0 (derivada na seção de descarga é nula, uma vez que a seção é 

normal ao eixo axial) e x1’=∞ (derivada na seção de admissão é infinita, pois a 

entrada no rotor é radial).  
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Aplicando essas condições de contorno, obtêm-se os seguintes coeficientes 

para as linhas de shroud e hub: 

 

� = −«�                                                 (2.106) 
 

¬ = «
 − «�                                               (2.107) 
 

� = −­
                                                 (2.108) 
 

® = ­� − ­
                                              (2.109) 
 

Nas tab. (2.8) e (2.9), estão os valores das constantes para as linhas de hub e 

shroud, respectivamente. 

 

Tabela 2.8: Constantes das Ovais de Lamé para a curva hub (base da pá) 

Constantes das Ovais de Lamé (Hub) 
a -0,1 
b -0,1 
c -0,13 
d -0,11 
p 2 
q 2 

 

Tabela 2.9: Constantes das Ovais de Lamé para a curva shroud (ponta da pá) 

Constantes das Ovais de Lamé (Shroud) 
a -0,1 
b -0,083 
c -0,13 
d -0,06 
p 2 
q 2 

 

A fig. (2.20) representa graficamente as curvas do hub e shroud. O eixo das 

abscissas representa a direção radial, enquanto o eixo das ordenadas representa a 

posição axial das duas curvas. 
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Figura 2.20: Gráfico do hub e shroud da palheta projetada  

 

Entretanto, para a camberline, a obtenção dos parâmetros da equação de 

Lamé é mais complexa, pois as condições de contorno são diferentes das impostas 

para as linhas de shroud e hub. Nesse caso, a condição de contorno x2’ não é nula ou 

ilimitada, dependendo do ângulo relativo de saída da pá (β3). 

Conforme salientado em [12], a maioria das camberlines tem a seguinte 

condição de contorno: x1’=0, no ponto z1, pois turbinas tem entrada radial, logo sua 

derivada em relação a direção axial é nula. Entretanto a condição de x2’ não é nula ou 

ilimitada, portanto, os cálculos são mais complexos do que os apresentados para as 

linhas de hub e shroud.  

As eq. (2.110) a (2.113) definem os parâmetros para a camberline. 

 

� = −«�                                                (2.110) 

 

¬ = �«� − «
� ¯1 − '4%a�
4$a�)ª°"%

�
                                 (2.111) 
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® = ­� + �                                               (2.112) 

 

�
4%± �©%"©$� ¯1 − '4%a�

4$a�)ª° + ª
4$a� '4%a�

4$a�)ª"
 = 0                    (2.113) 

 

 O ponto principal dessa parte é a definição da constante c. A obtenção dessa 

constantel é complicada, pois a eq. (2.112) não tem solução algébrica simples. A 

definição das demais constantes é bem mais simples, uma vez que a constante ‘c’ já 

foi definida anteriormente. 

 A tab.(2.10) apresenta as constantes obtidas para definir a camberline, que 

caracteriza a posição tangencial da pá do rotor. 

 

Tabela 2.10: Constantes das Ovais de Lamé para a curva camberline - hub (base da pá) 

Constantes das Ovais de Lamé (Camberline) 
a 0 
b 0,1 
c -0,104 
d -0,104 
p 2 
q 2 

 

A fig. (2.21) representa graficamente a camberline, que, conforme explicado, 

é igual para as duas curvas. O eixo das abscissas representa a direção tangencial, 

enquanto o eixo das ordenadas representa a posição axial das duas curvas. 

A camberline define o ângulo θ das coordenadas cilíndricas em função da 

posição axial, uma vez que o eixo das ordenadas corresponde ao ângulo θ 

multiplicado pelo raio de referência.  

A definição das duas curvas implica na definição de todos os pontos da pá em 

função do eixo axial z, ou seja, dada a posição axial z1 é possível calcular, a partir 

das curvas, a posição radial r e o ângulo θ. Logo a forma da pá está definida, uma 

vez que todos os pontos estão definidos. 

O próximo passo foi o desenho do rotor em um programa CAD, considerando 

a forma da pá definida acima e os dados definidos no projeto inicial da turbina. A fig. 

(2.22) mostra apenas o rotor sem a presença do estator e da voluta. 
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Figura 2.21: Gráfico das camberlines do hub e shroud da palheta projetada  

 

Conforme obtido no projeto preliminar, há a necessidade de definir um 

estator para direcionar o fluxo para que o fluido entre com um vetor velocidade que 

faça um ângulo α2 com a direção radial. Logo, foi desenvolvido um estator e uma 

voluta para que o fluxo corresponda aquele obtido pelo projeto através triângulo de 

velocidades. 

 

Figura 2.22: Rotor desenvolvido a partir dos Projetos Preliminar e de Formato da Pá 
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A fig. (2.23) mostra a parte interna da voluta, ou seja, a região ocupada pelo 

fluido. Observa-se que a distância entre estator e voluta não é uniforme para manter a 

velocidade do fluxo ( a referência [11] denomina esse tipo de voluta como ‘scroll’).  

O objetivo dessa voluta e das palhetas do estator é distribuir o fluxo para o 

rotor e fazer com que o gás entre no estator com o ângulo desejado (α2), o qual foi 

descrito através do triângulo de velocidades. 

Ao analisar a fig. (2.23), conclui-se que há uma diferença entre o número de 

pás do rotor e de pás no estator. O rotor tem 7 pás, enquanto o estator, 12 pás, esse 

número de palhetas do estator é sugerido em [11]. Esse fato não é tão incomum, 

sendo que, em [4], foi desenvolvido um rotor axial com diferença de passo entre 

estator e rotor (o que implica em números diferentes de palhetas para o estator e 

rotor, dado que ambos têm o mesmo diâmetro). 

A geometria da voluta representada na fig. (2.23) já está pronta para ser 

introduzida no software utilizado para geração de malha. 

Observa-se que não há um grande aprofundamento teórico em relação à 

voluta e seria necessário um maior desenvolvimento da metodologia para o projeto 

da voluta. A literatura é mais focada no desenho e projeto do rotor, sendo a voluta 

deixada em segundo plano. Inclusive em [11], infere-se que a presença de estatores 

não é necessária, mas, para uma maior eficiência os estatores são recomendados. 

Portanto a geometria está totalmente descrita e, conseqüentemente, está 

pronta para ser avaliada através de softwares CFD. Os resultados e conclusões 

obtidas para a geometria radial estão dispostos na seção 5. 

Uma possível continuação desse trabalho seria o projeto de um rotor 

tridimensional acompanhado de um novo projeto para a voluta e para os estatores, 

partindo de uma metodologia previamente descrita na literatura. 
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Figura 2.23: Rotor e Estator Projetados  
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3. MÉTODOS NUMÉRICOS APLICADOS A DINÂMICA DOS FLUIDOS 

 

Os programas CFD obtêm soluções numéricas para as equações de transporte 

dentro do domínio especificado. Nesta seção, é feita a introdução de duas equações 

de transporte fundamentais resolvidas no modelo numérico: a equação da energia e a 

equação da quantidade de movimento. 

 

3.1. Equação da Energia 

 

Conforme visto na seção 2.1, a expansão e a produção de trabalho são feitas 

nas turbinas, portanto, ao estudar a turbina, há a necessidade de aplicar a primeira lei 

da termodinâmica para os estágios da turbina.  

A equação da energia deriva da 1ª lei da termodinâmica que afirma que a taxa 

de variação da energia é igual à taxa de adição de calor somado ao trabalho aplicado 

sobre o fluido. 

A taxa de aumento de energia é descrita pela eq. (3.1). 

 

v ²0
²r                                                         (3.1) 

 

Onde e é a energia do fluido por unidade de volume.  

A taxa de trabalho aplicado sobre o fluido é obtida a partir da multiplicação 

das forças aplicadas sobre um elemento infinitesimal e as velocidades nas faces. A 

eq. (3.2) representa a taxa de trabalho realizado sobre o fluido: 

 

−®³´��µ� + ¶�·¸¹¹�
¶4 + ¶|·¸º¹�

¶» + ¶�·¸¼¹�
¶© + ¶|½¸¹º�

¶4 + ¶|½¸ºº�
¶» + ¶|½¸¼º�

¶© + ¶�2¸¹¼�
¶4 +

¶|2¸º¼�
¶» + ¶�2¸¼¼�

¶©                                              (3.2) 

 

A dedução da eq. (3.2) pode ser analisada com maior profundidade em [1]. 

A última parte é relativa ao fluxo de calor, representada na eq. (3.3): 

 

−®³´ ¾ = ®³´|¿ À,�®����                                       (3.3) 
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Na eq. (3.3), q é o vetor fluxo de calor transmitido por condução, k é a 

condutibilidade térmica do fluido e T a temperatura. 

Essa relação de fluxo de calor é conhecida como a lei de Fourier, a qual 

relaciona o fluxo de calor por condução e a temperatura. A dedução desse termo é 

apresentada em [1]. 

Com a definição dos termos, pode ser montada a eq. (3.4), denominada equação de 

energia, onde SE é um termo fonte de energia. 

 

v ²0
²r = −®³´��µ� + ¶�·¸¹¹�

¶4 + ¶|·¸º¹�
¶» + ¶�·¸¼¹�

¶© + ¶|½¸¹º�
¶4 + ¶|½¸ºº�

¶» + ¶|½¸¼º�
¶© +

¶�2¸¹¼�
¶4 + ¶|2¸º¼�

¶» + ¶�2¸¼¼�
¶© + ®³´|¿ À,�®���� + ��                      (3.4) 

 

A equação da energia pode ser caracterizada como a aplicação da primeira lei 

da termodinâmica para um elemento infinitesimal, ou, de outro ponto de vista, é a 

primeira lei da termodinâmica escrita de uma forma apropriada para dinâmica dos 

fluidos computacional. 

Algumas simplificações podem ser aplicadas, conforme vistas em [1]. Um 

bom exemplo é a aplicação da hipótese de gás perfeito. 

 

3.2. Equação da Quantidade de Movimento e Equação de Navier-Stokes 

 

Assim como a equação da energia, a equação da quantidade de movimento é 

derivada da 2ª Lei de Newton para um elemento fluido infinitesimal. As forças 

aplicadas são as pressões nas faces do elemento e as tensões viscosas. 

Ao aplicar a 2ª lei de Newton para um elemento infinitesimal, definem-se as 

equações (3,5), (3.6) e (3.7), onde τ são as forças viscosas, p é a pressão e SM são os 

termos fonte da equação da quantidade de movimento. 

 

v ²·
²r = ¶�"�a¸¹¹�

¶4 + ¶¸º¹
¶» + ¶¸¼¹

¶© + ��4                             (3.5) 

 

v ²½
²r = ¶¸¹º

¶4 + ¶|"�a¸ºº�
¶» + ¶¸¹º

¶© + ��»                             (3.6) 
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v ²2
²r = ¶¸¹¼

¶4 + ¶¸º¼
¶» + ¶�"�a¸¼¼�

¶© + ��©                              (3.7) 

 

Não há uma equação que represente com exatidão as forças viscosas, o que 

implica na necessidade de modelos para essas forças. A modelagem mais comum 

desse termo deu origem a equação de Navier-Stokes. 

A formulação usa o modelo de Fluido Newtoniano, no qual a força viscosa é 

proporcional a taxa de deformação do fluido. Por se tratar da equação da quantidade 

de movimento, observam-se três componentes dispostas a seguir (eq. (3.8), (3.9) e 

(3.10)).  

 

v ²·
²r = − ¶�

¶4 + ®³´|Á À,�®�j�� + ��4                            (3.8) 

 

v ²½
²r = − ¶�

¶4 + ®³´|Á À,�®�´�� + ��»                            (3.9) 

 

v ²2
²r = − ¶�

¶4 + ®³´|Á À,�®�T�� + ��©                         (3.10) 

 

A referência [5] classificou as eq. (3.8), (3.9) e (3.10) como equações 

diferenciais parciais de segunda ordem não lineares. A equação de Navier-Stokes não 

tem solução algébrica. Soluções algébricas podem ser obtidas, se forem usadas 

algumas simplificações como escoamento invíscido. A ausência de uma solução 

algébrica torna a aplicação de métodos numéricos necessária para obtenção de 

resultados.  

 

3.3. Escoamentos Turbulentos 

 

O escoamento pode ser classificado, como viscoso ou não viscoso (invíscido). 

Além dessa classificação, há a classificação do escoamento laminar, de transição e 

turbulento. A identificação de qual dos regimes é observada pode ser obtida a partir 

do número adimensional de Reynolds, que relaciona as forças de inércia e as forças 

viscosas. 



 

Caso o número de Reynolds seja inferior a um valor crítico, o escoamento é 

laminar, caso seja superior

valores de Reynolds entre esses dois val

transição. 

No regime laminar

perturbações, assim caracterizando o escoamento como de forma ordenada.

Entretanto, em turbinas a gás, o escoamento é caracteri

pela turbulência e, portanto, faz

do regime turbulento.

A característica fundamental dos escoamentos turbulentos é a flutuação 

aleatória das variáveis do escoamento (como pressão, veloci

é observada para todos os escoamentos, independente de estar em regime permanente 

ou transitório. A fig.

variáveis, evidenciando a aleatoriedade do fenômeno. 

 

Figura 

 

As variáveis podem ser decompostas em duas parcelas uma parcela média e 

outra que flutua sobre esse valor médio. A sobreposição dessas duas parcelas 

resultaria nos valores reais das variáveis. 

Um bom exemplo dessa decomposição é a da velocidade

(3.12).  

 

AÂ = x½Ã
Ä                                                   

Caso o número de Reynolds seja inferior a um valor crítico, o escoamento é 

laminar, caso seja superior a outro valor crítico, o escoamento é turbulento. Para 

valores de Reynolds entre esses dois valores críticos, diz-se que o escoamento é de 

No regime laminar, as forças de inércia são suficientes para amortecer as 

perturbações, assim caracterizando o escoamento como de forma ordenada.

Entretanto, em turbinas a gás, o escoamento é caracterizado principalmente 

pela turbulência e, portanto, faz-se necessária uma caracterização mais aprofundada 

do regime turbulento. 

A característica fundamental dos escoamentos turbulentos é a flutuação 

aleatória das variáveis do escoamento (como pressão, velocidade, etc.). Essa variação 

todos os escoamentos, independente de estar em regime permanente 

A fig. (3.1) exemplifica o comportamento caótico e randômico das 

variáveis, evidenciando a aleatoriedade do fenômeno.  

Figura 3.1: Gráfico da velocidade em função do tempo 

As variáveis podem ser decompostas em duas parcelas uma parcela média e 

outra que flutua sobre esse valor médio. A sobreposição dessas duas parcelas 

resultaria nos valores reais das variáveis.  

Um bom exemplo dessa decomposição é a da velocidade, represent
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                                                  (3.11) 

 

Caso o número de Reynolds seja inferior a um valor crítico, o escoamento é 

outro valor crítico, o escoamento é turbulento. Para 

se que o escoamento é de 

rcia são suficientes para amortecer as 

perturbações, assim caracterizando o escoamento como de forma ordenada. 

zado principalmente 

se necessária uma caracterização mais aprofundada 

A característica fundamental dos escoamentos turbulentos é a flutuação 

dade, etc.). Essa variação 

todos os escoamentos, independente de estar em regime permanente 

exemplifica o comportamento caótico e randômico das 

 

 

As variáveis podem ser decompostas em duas parcelas uma parcela média e 

outra que flutua sobre esse valor médio. A sobreposição dessas duas parcelas 

, representada na eq. 
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j�Å� = L�Å� + j′�Å�                                        (3.12) 

 

A velocidade decomposta pode ser substituída na equação de Navier-Stokes 

e, em seguida, aplica-se a média de Reynolds aos dois lados da equação, assim é 

obtida a equação de Navier-Stokes média temporal (essa equação é conhecida como 

RANS – Reynolds Averaged Navier-Stokes). Essa equação descreve as variáveis 

médias do escoamento turbulento e está disposta a seguir: 

 

¶O
¶r + ®³´|LLJJK� = − 


x
¶�
¶4 + Æ ®³´|À,�®�L�� + 


x �¶"·′$ÇÇÇÇÇÇ
¶4 + ¶"·′∙½′ÇÇÇÇÇÇÇÇ

¶» + ¶"·′∙2′ÇÇÇÇÇÇÇÇÇ
¶© �    (3.13) 

 

 A eq. (3.13) é diferente daquela definida por Navier-Stokes inicialmente, pois 

aparecem novos termos denominados Tensões de Reynolds. Estes novos termos 

assim como as forças viscosas têm de ser modelados e essa necessidade levou a 

introdução de inúmeros modelos de turbulência. 

No caso desse trabalho, será tratado o modelo k-ε, o qual será discutido 

posteriormente. 

 

3.4. Hipótese de Boussinesq 

 

A hipótese de Boussinesq é um modelo para as Tensões de Reynolds que 

foram apresentadas na seção 3.3. O modelo é semelhante ao de um fluido 

Newtoniano, na qual a tensão viscosa é proporcional a taxa de deformação do fluido. 

A definição matemática dessa hipótese é: 

 

ÈÉÊ = −vj′Ëj′ÌÇÇÇÇÇÇÇ = Ár �¶O�
¶4Í + ¶OÍ

¶4� �                              (3.14) 

 

O modelo se baseia no fato de que as Tensões de Reynolds são proporcionais 

as taxas de deformação médias. A proporcionalidade é feita através da viscosidade 

turbulenta (µt). 
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Essa hipótese é aplicada no modelo k- ε, que se baseará nas variáveis k e ε 

para definir a viscosidade turbulenta. É importante ressaltar que, diferentemente da 

viscosidade dinâmica (µ), a viscosidade turbulenta não é uma propriedade do fluido. 

 

3.5. Modelo k- ε 

 

O modelo k-ε se baseia na solução de duas equações diferenciais. Uma 

modela a energia cinética turbulenta, representada pela letra k, e a outra modela a 

taxa de dissipação de energia cinética turbulenta (ε). 

 A equação modelada de k é dada pela eq. (3.15). 

 

¶�xÎ�
¶r + ®³´|v¿LJJK� = ®³´ ¯Ä�

Ï� À,�® ¿° + 2Á {ÉÊ ∙ {ÉÊ − vÐ         (3.15) 

 

A equação de ε é modelada pela eq. (3.16): 

 

¶�xÑ�
¶r + ®³´|vÐLJJK� = ®³´ ¯Ä�

Ï� À,�® Ð° + ;
Ñ Ñ
Î 2Á {ÉÊ ∙ {ÉÊ − ;�Ñv Ñ$

Î      (3.16) 

 

A viscosidade turbulenta é definida como: 

 

Ár = v;Ä Î$
Ñ                                               (3.17) 

 

A hipótese de Boussinesq somada ao modelo k-ε resulta na eq. (3.18) 

 

−vjË′jÌ′ÇÇÇÇÇÇÇ = Ár �¶O�
¶4Í + ¶OÍ

¶4� � − �
� v¿ÒÉÊ                           (3.18) 

 

Assim estão definidas todas as equações e parâmetros do modelo k- ε, que 

objetiva um modelo para as tensões de Reynolds. Esse modelo tem suas limitações, 

conforme salienta [1], entretanto sua aplicação é extremamente útil em inúmeros 

problemas estudados na indústria. 
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3.6. Leis de Parede 

 

Um dos princípios fundamentais da mecânica dos fluidos é o princípio da 

aderência completa, na qual a camada de fluido adjacente a uma parede tem a mesma 

velocidade da parede.  

Próxima a parede, as forças viscosas têm maior magnitude, portanto há um 

amortecimento das flutuações na velocidade tangencial. Ao se afastar da parede, a 

intensidade da turbulência aumenta significativamente. Dessa forma, fica clara a 

influência da parede no escoamento. 

De acordo com [1], [4] e [6], o escoamento próximo a parede é descrito por 

três regiões. A primeira é denominada sub-camada viscosa (ou linear), na qual há 

uma predominância da viscosidade molecular. A camada intermediária caracteriza-se 

pela igualdade dos efeitos entre viscosidade molecular e viscosidade turbulenta. 

Finalmente, há a camada em que a turbulência é predominante e esta é caracterizada 

por estar mais afastada da parede. 

 O modelo k-ε usa a lei logarítma de parede ao invés de resolver as equações 

de transporte para os elementos próximos a parede. As leis de parede são equações 

semi-empíricas, cuja principal função é modelar a transição entre a parte sub-camada 

viscosa e a parte de turbulência predominante. 

Antes de introduzir a lei logarítma, é necessária a definição de alguns 

adimensionais: 

 

ja = O
·Ó                                                 (3.19) 

 

Ôa = x·Ó»
Ä                                               (3.20) 

 

Nas eq. (3.19) e (3.20), é utilizada a velocidade uτ, que é definida pela eq. 

(3.21). 

j¸ = ¡¸�
x                                                (3.21) 
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A lei logarítma é válida para 30<y+<500 e modela matematicamente a 

camada intermediária, na qual os efeitos da viscosidade molecular são equiparados 

pelos efeitos turbulentos. A lei logarítma, de acordo com [1] é: 

 

ja = 

Õ ∙ Ö×�{Ôa�                                        (3.22) 

 

 Essa equação é descrita por [6] com algumas diferenças, entretanto a lei 

utilizada e descrita é a mesma. 

O tema introduzido nessa seção é importante, uma vez que expõe uma das 

precauções que se deve ter ao discretizar a malha próxima a parede.  

Uma malha muito grosseira pode fazer com que o primeiro elemento não 

esteja dentro do intervalo, portanto a lei logaritma não seria aplicada e os efeitos da 

parede não seriam considerados, invalidando o modelo. 

Logo, ao gerar a malha, tem de ser tomada a precaução de que o primeiro 

elemento caia dentro da lei logarítma. 
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4. SIMULAÇÃO NUMÉRICA DE TURBINA AXIAL 

 

Com o desenvolvimento tecnológico dos computadores, a ferramenta 

numérica se tornou muito útil para resolver problemas complexos como o 

escoamento em turbinas. 

Nesse estudo, serão feitas duas abordagens para a simulação numérica da 

turbina axial. A primeira abordagem será a simulação bidimensional do estágio da 

turbina na seção do raio médio. A segunda será a simulação tridimensional, 

considerando os efeitos tridimensionais negligenciados na simulação bidimensional. 

O estudo bidimensional se aproxima do estudo realizado no triângulo de 

velocidades, pois ambos não consideram efeitos tridimensionais do escoamento. 

O estudo tridimensional representa melhor o escoamento em volta da 

geometria do rotor e do estator, levando em conta os efeitos em relação ao eixo 

radial, além dos axiais e tangenciais que já foram representados na bidimensional. 

 

4.1. Simulação Bidimensional 

 

Primeiramente será feito um estudo bidimensional do escoamento das pás 

sobre o raio médio, se aproximando dos cálculos feitos através do método semi-

empírico, o triângulo de velocidades. 

O escoamento obtido numericamente por esse modelo não é fiel ao observado 

nas condições de operação reais. Uma aproximação mais próxima do observado em 

testes é obtida com uma simulação tridimensional. 

A simulação bidimensional tem a vantagem ser extremamente rápida, tendo 

baixo custo computacional, o que reforça sua aplicação como aproximação inicial do 

escoamento em torno das palhetas. 

Concluindo, o objetivo da simulação bidimensional é a comparação entre os 

resultados obtidos pelo triângulo de velocidades (método analítico) e a simulação 

bidimensional no raio médio, uma vez que o triângulo de velocidades é avaliado no 

raio médio. 
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4.1.1. Representação do Domínio de estudo e Discretização 

 

O domínio de estudo pode ser separado em duas partes: a primeira é estática e 

representa o domínio do estator, já a outra é móvel, representando o domínio do 

rotor. Para ainda maior simplificação, é simulada apenas uma pá do estator e outra do 

rotor, devido ao fato de que há uma periodicidade (o escoamento é igual em todas as 

pás do rotor). 

Na fig. (4.1), há a representação gráfica do domínio estudado sem ser 

discretizado. 

 

 

Figura 4.1: Domínio do Estudo Numérico 

 

Esse domínio é discretizado em vários elementos, assim possibilitando a 

solução numérica das equações de transporte para cada elemento. De acordo com [1], 

a discretização influencia a qualidade dos resultados, pois uma maior discretização 

implica em maior fidelidade ao que ocorre de fato na realidade, entretanto uma 

discretização com muitos elementos implica em um tempo computacional muito 

elevado. Logo, é necessária uma solução de compromisso. 

 A discretização foi feita no programa ANSYS ICEM CFD 11.0 SP1, gerando 

a malha, denominação usada para a discretização do domínio do estudo. 

 A fig. (4.2) apresenta o domínio discretizado. 

 

 
Figura 4.2: Domínio Discretizado 
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4.1.2. Condições de Contorno 

 

As condições de contorno são importantes para a solução das equações 

diferenciais. A introdução de condições de contorno inapropriadas ou incorretas 

implica em soluções que não correspondem à realidade, o que acarreta em 

conclusões incorretas e características de escoamento irreais. 

Foram utilizadas algumas condições de contorno já citadas anteriormente na 

descrição do problema e para os cálculos iterativos do triângulo de velocidades. 

O rotor opera em torno de 10.000 rpm, o que implica em uma velocidade 

tangencial no raio médio de 70,162 m/s. Essa velocidade é utilizada para indicar o 

movimento da malha do rotor durante a simulação. Isso implica em um período em 

que há interface entre a malha do estator e do rotor, no caso o período é 1,619 * 10-4 

segundo. 

Ao introduzir essa velocidade tangencial, percebe-se que há um deslizamento 

entre a malha do estator e a do rotor. Com a finalidade de definir a interface entre os 

dois domínios, é definida a ‘sliding mesh’ (em português, malha deslizante), entre as 

faces de saída do estator e entrada do rotor. 

A malha deslizante é a interface entre os domínios do estator e do rotor, ou 

seja, é a face em que o fluido que passou pelo domínio do estator entra no do rotor. A 

simulação através da interface deslizante implica em análises de regime transiente, 

uma vez que para cada posição da malha o escoamento é diferente.  

A simulação é transiente, porém para obter valores iniciais mais próximos dos 

finais é simulado o escoamento em regime permanente, uma vez que a convergência 

é obtida mais facilmente. 

Ao definir a malha deslizante no software Fluent 6.3.26, define-se uma 

periodicidade para garantir que a interface entre estator e rotor ocorra em toda a face 

de entrada do rotor e em toda a face de saída do estator durante todos os instantes de 

tempo corretamente. Maiores informações podem ser encontradas na referência [6]. 

A condição de contorno nas laterais tanto do estator quanto do rotor é a 

periodicidade, pois o fluxo de massa em uma das laterais tem de ser admitido na 

lateral oposta, para observar a iteração do fluxo entre uma palheta e a palheta 

adjacente. 
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As palhetas tanto do rotor quanto do estator são consideradas paredes 

adiabáticas, portanto a troca de calor entre ar e turbina é considerada nula. 

As últimas condições a serem definidas são as de entrada e saída de fluido. 

No modelo, foi imposta a vazão de entrada do fluido no domínio 28,50 kg/(m2s), e a 

temperatura de entrada de 873,25K (ou 600ºC). O gás (considerado gás perfeito) tém 

de ser expandido até a pressão atmosférica, portanto é definida a pressão de saída de 

101325 Pa e a temperatura de 300 K (ou 26,75ºC), caso haja refluxo na seção de 

saída da malha. 

A simulação foi feita para 400 intervalos de tempo, portanto o passo temporal 

é 1,90986 * 10-6 segundos e, a cada passo de tempo, itera-se no máximo 40 vezes 

para ser obtida a solução. 

As condições de contorno foram implementadas no software Fluent 6.3.26. 

 

4.1.3. Resultados  

 

Os resultados da simulação são representados graficamente através dos 

contornos de pressão, temperatura e velocidade. Antes de simular o domínio com 

malha móvel, usa-se a malha estacionária e é feita uma simulação em regime 

permanente. Os resultados dessa simulação são as condições iniciais para a 

simulação com malha móvel. 

Ao simular primeiro a malha estacionária, há uma inicialização do campo e 

parte-se de resultados mais próximas dos finais. Assim a convergência é mais rápida 

e os resultados mais confiáveis. 

As fig. (4.3), (4.4) e (4.5) são os contornos de pressão para três instantes de 

tempos diferentes.  

A expansão ocorre em duas etapas, a primeira é a expansão no estator e a 

segunda é a expansão no rotor. O campo de pressão mostra que metade da expansão 

ocorre no estator e metade no rotor, evidenciando um estágio com 50% de reação. 
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Figura 4.3: Contornos de Pressão para t=1,2206 10-3 segundos 

 

 

Figura 4.4: Contornos de Pressão para t=1,3041 10-3 segundos 
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Figura 4.5: Contornos de Pressão para t=1.391 10-3 segundos 

 

As fig. (4.6), (4.7) e (4.8) caracterizam o campo de temperaturas. A média do 

campo está em torno de 850K, entretanto observa-se que o ponto crítico é a parte 

inferior da pá do estator, onde observam-se temperaturas próximas de 873K devido 

ao processo de estagnação do fluxo de entrada. 

As temperaturas nas pás da turbina são pontos críticos, pois há limitação do 

material do estágio da turbina, o qual pode perder suas propriedades físicas 

estruturais ao operar sobre altas temperaturas, ou seja, as altas temperaturas podem 

levar a perda das características estruturais introduzidas pelo tratamento térmico 

realizado no material. 
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Figura 4.6: Campo de temperatura para t=1,2206 10-3 

 

 

Figura 4.7: Campo de temperatura para t=1,3041 10-3 
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Figura 4.8 Campo de temperatura para t=1,3910 10-3 

 

 

Figura 4.9: Campo de Velocidades para t=1,2206 10-3 
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Figura 4.10: Campo de Velocidades para t=1,3041 10-3 

 

 

Figura 4.11: Campo de Velocidades para t=1,3910 10-3 
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O campo de velocidades (fig. (4.9), (4.10) e (4.11)) corrobora os resultados 

obtidos pelo triângulo de velocidades, pois as magnitudes das velocidades estão 

próximas dos valores obtidos pelo triângulo de velocidades. 

A fig. (4.12) mostra o vetor de velocidades na saída do rotor. A análise dos 

vetores permite inferir que há uma recirculação na saída do rotor, o que implica em 

perdas no escoamento. 

Essa recirculação afeta inclusive o contorno de temperaturas que apresenta 

uma periodicidade diagonal nos resultados devido à influência das demais pás e da 

recirculação. 

 

 

Figura 4.12: Detalhe dos contornos de vetor de velocidades 

 

4.2. Simulação Tridimensional 
 

O próximo passo do estudo é a simulação tridimensional, a qual caracteriza 

com maior precisão os fenômenos observados durante a operação da turbina.  

O estudo bidimensional é muito bom para avaliar planos afastados do hub e 

do shroud, ou seja, em planos que estão distantes das bordas, permitindo que os 

efeitos da borda no escoamento sejam negligenciados. A simulação tridimensional 

permite que esses efeitos de borda sejam levados em consideração e, portanto, o 
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modelo numérico está mais próximo de caracterizar o fenômeno observado na 

realidade. 

O ponto negativo deste tipo de simulação é longo tempo para o 

processamento das equações que regem fisicamente o problema, assim o custo 

computacional é elevado, em comparação com a simulação bidimensional. 

Em suma, o principal objetivo dessa simulação é caracterizar fenômenos que 

não podem ser observados em simulações bidimensionais, como a o turbilhão (swirl) 

na saída do rotor, bem como uma melhor predição da potência gerada no rotor. 

 
4.2.1. Representação do Domínio a ser estudado e Discretização 

 

Bem como definido para a simulação bidimensional, o domínio de estudo é 

separado em duas partes o estator (domínio estático/fixo) e o rotor (domínio móvel).  

Para diminuir o tempo necessário para atingir a convergência numérica da 

simulação, é comum simular apenas uma das pás de cada um dos domínios, logo, 

dentro dos domínios, estão representadas apenas uma pá do estator e uma do rotor.  

A discretização do domínio foi realizada com o uso do software ANSYS 

ICEM CFD 11.0 SP1, gerando a malha, assim como foi feito para a simulação 

bidimensional. 

Obviamente, as regras de discretização apresentadas na seção 4.1.1 ainda são 

válidas e uma solução de compromisso entre maior discretização e tempo de solução 

tem de ser obtida. 

Na fig. (4.13), há a representação gráfica do domínio estudado já discretizado. 

 

 
Figura 4.13: Domínio da Simulação Tridimensional Discretizado 
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4.2.2. Condições de Contorno 
 

A influência das condições de contorno na precisão dos resultados já foi 

discutida na seção 4.1.2. Portanto, esse tópico não será retomado nessa seção. 

Algumas condições de contorno foram alteradas devido à aquisição de dados 

durante testes da turbina. Além dessas alterações, foram introduzidas novas 

condições de contorno, uma vez que há introdução das paredes na parte superior e 

inferior do domínio, correspondentes a ponta da pá e a base do rotor. 

Uma simplificação adotada na simulação bidimensional era de que o 

movimento relativo entre o estator e o rotor era translacional, portanto foi definida a 

velocidade de translação. Entretanto aqui o movimento relativo considerado é o 

movimento rotacional do rotor, que é 5412 rpm, sendo essa uma das condições de 

contorno. Nota-se uma diferença em relação velocidade considerada para a 

simulação bidimensional, isso se deve a introdução de dados experimentais mais 

recentes da turbina axial já instalada. 

Outra condição de contorno é a periodicidade nas laterais, pois o fluxo de 

massa em uma das laterais tem de ser admitido na lateral oposta, assim simulando o 

efeito que o escoamento em uma pá pode produzir na pá adjacente. A malha dessas 

laterais está representada nas fig. (4.14) e (4.15). 

 

 

Figura 4.14: Laterais com condição de contorno de periodicidade (rotor) 
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Figura 4.15: Laterais com condição de contorno de periodicidade (estator) 

 

As condições de contorno das palhetas são paredes sem escorregamento e 

adiabáticas, logo não há fluxo de calor nas palhetas e é imposto que o princípio da 

aderência completa do fluido é observado. Essa mesma condição de contorno é 

observada tanto para o hub quanto para o shroud.  

As condições de contorno de fluxo a serem definidas são as condições de 

contorno da entrada do estator e saída do rotor. A condição de contorno da saída do 

rotor é simples, pois o fluido é expandido até a pressão atmosférica, logo essa é uma 

condição de pressão prescrita a 101325 Pa. Caso seja observado refluxo, o gás 

retorna a 300K (temperatura ambiente adotada 26,75 ºC). 

A partir das medições na própria turbina, obteve-se que o gás entra no estator 

a 600 ºC (873,25 K) e vazão, para admissão parcial, de 0,15 kg/s. Assim obteve-se 

que, por pá, obteve-se uma vazão de 9,677419 10-3 kg/s. 

Uma simplificação adotada é de que o gás é considerado gás perfeito, sendo 

uma boa aproximação, uma vez que turbinas a gás trabalham com grande excesso de 

ar, e o ar comporta-se próximo do previsto pela hipótese de gás perfeito. 

Uma condição de contorno muito importante em máquinas rotativas é a 

interface entre os domínios do rotor e do estator. Para a simulação bidimensional foi 

adotado o sliding mesh, que comumente usado para simulações transientes. 
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 Entretanto a simulação não é transiente devido ao fato de que há uma 

diferença entre o pitch do estator e o do rotor, o que impede a realização de 

simulações transientes que consistam apenas uma pá do estator e do rotor. A 

simulação da geometria completa necessitaria um número elevado de elementos e 

alto custo computacional, inviabilizando essa simulação. 

Levando em conta a viabilidade, optou-se por definir que a interface seria 

feita a partir de uma metodologia especial do programa CFX para máquinas 

rotativas, denominada ‘Frozen Rotor’. Essa metodologia se baseia em uma solução 

em regime permanente, implicando em um custo computacional muito menor, 

entretanto a caracterização do escoamento não corresponde a real, uma vez que a 

influência de fenômenos transientes é negligenciada. 

O ‘Frozen Rotor’ tem suas limitações, entretanto representa bem a média do 

escoamento. Logo, para análises qualitativas, os resultados são satisfatórios. 

As condições de contorno foram implementadas no software ANSYS CFX 

12.0 SP1, o qual resolve as equações de transporte, caracterizando o escoamento na 

turbina. 

A fig. (4.16) mostra as condições de contorno já introduzidas no programa 

CFX. Observam-se a condição de periodicidade nas laterais do rotor e estator, 

representadas pelas setas circulares de cor roxa, as condições de entrada e saída de 

fluxo em suas respectivas regiões, representadas pelas setas pretas e a interface entre 

as malhas do rotor e do estator, que está representada por pequenas setas verdes 

próximas da interface. 

Assim o modelo está pronto para ser resolvido através do solver CFX, dentro 

do qual está implementado o código, que descreve as equações descritas na seção 3, 

desta monografia. 

As referências [1] e [8] se aprofundam na discretização das equações 

apresentadas na seção 3 e na implementação das equações para dinâmica dos fluidos 

computacional (CFD). 
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Figura 4.16: Condições de Contorno implementadas para a solução numérica 

 

4.2.3. Resultados 

 

Nesta seção, serão discutidos e apresentados os resultados da simulação 3D 

correspondente ao rotor axial, atualmente instalado no LETE (Laboratório de 

Engenharia Térmica e Ambiental). 

Um dos objetivos era fazer uma comparação entre a simulação bidimensional 

e a tridimensional, entretanto o modelo tridimensional tem condições de contorno 

diferentes daquelas impostas na bidimensional, pois foram obtidos dados 

experimentais. Entretanto ainda podem ser feitas análises qualitativas dos fenômenos 

descritos em ambas as simulações e a aplicabilidade de cada simulação. 

A tab. (4.1) mostra os resultados da simulação numérica, baseada nas 

condições de contorno apresentadas na seção 4.2.2.  
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Tabela 4.1: Resultados de Potência e Temperatura da Simulação Tridimensional 

Resultados Simulação Numérica 
T01 (K) 873,248 
T02 (K) 872,874 
T03 (K) 866,059 

Grau de Reação 0,9480 
Torque (N m) 0,118249 
Potência (W) 1005,252453 

 

Observa-se um alto grau de reação, 94,8%, um valor muito distante dos 

encontrados na literatura (desenvolvida normalmente para grau de reação de 50%) e 

o de projeto, 50%. 

Esse resultado pode ser justificado pelo fato da turbina estar operando em 

condições muito diferentes das quais ela vai projetada, principalmente em relação à 

rotação (rotação de projeto é 15000 rpm e de trabalho é 5412 rpm). Este é um dos 

fatores que contribui para a baixa potência observada, uma vez que foi projetada para 

gerar 4 kW, aproximadamente. 

Outro fato importante é o alto ângulo de saída do gás. A ref. [2] aconselha 

ângulos da velocidade absoluta em relação ao eixo axial (α2) por volta de 0°, 

entretanto a turbina foi projetada para 60°, o que pode ser apontado como uma das 

possíveis causas do desempenho observado na turbina, muito abaixo do esperado 

Outro fato que explica a baixa potência obtida é a vazão de trabalho ser muito 

menor do que a esperada. De acordo com [4], a vazão de projeto era 0,25 kg/s em 

admissão parcial (em admissão total 0,5 kg/s). Entretanto a vazão obtida no 

experimento é 0,15 kg/s em admissão parcial (0,3 kg/s em admissão total). Assim 

observa-se uma diferença de 40%, contribuindo para a baixa potência da turbina. 

As fig. (4.17) e (4.18) mostram as pressões sobre as pás. Tanto na pá do 

estator quanto do rotor, observa-se duas áreas com características distintas, a 

primeira é caracterizada por altas pressões devido à incidência do gás (denominada 

superfície de pressão), e outra caracterizada pela baixa pressão, sendo conhecida por 

superfície de sucção.  

A pressão na entrada não foi especificada, uma vez que a vazão foi 

especificada, entretanto observou-se que a pressão na entrada é de 107,4 kPa, a qual 

corresponde a uma variação de pressão de 6,3 kPa, muito próximo dos dados obtidos 

pela medição (em torno de 6 kPa). 
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Figura 4.17: Campo de Pressões sobre as pás 

 

 

Figura 4.18: Campo de Pressões sobre as pás 
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Figura 4.19: Linhas de Corrente do Escoamento 

 

 

Figura 4.20: Linhas de Corrente do Escoamento 
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As linhas de corrente (fig.(4.19) e (4.20)) mostram um importante fator não 

considerado na simulação bidimensional: a variação do ângulo α3 do topo da palheta 

até a base da palheta. Observa-se que o ângulo varia desde sua maior amplitude, no 

shroud, até sua menor amplitude, no hub.  

Um ponto que deve ser ressaltado é o alto ângulo de saída do gás. De acordo 

com [2], esse ânulo não deve passar de 10°, ficando em torno de 0° no ponto ótimo. 

Entretanto observa-se que o ângulo observado na seção de saída é bem maior do que 

esse o que pode explicar a baixa potência gerada, ao comparar com o projeto [4]. O 

ângulo de 60° foi obtido para uma rotação de 15000 rpm e, atualmente a turbina 

opera a 5412 rpm, fazendo com que o ângulo α3 seja ainda maior, pois a geometria 

do rotor impõe o ângulo relativo β3 para a velocidade relativa. Pelo triângulo de 

velocidades, ao somar uma velocidade tangencial U menor do que a de projeto, 

obtém-se um ângulo α3 ainda maior, o que pode ser a causa da baixa potência gerada 

na turbina. 

Novamente avaliando as fig. (4.19) e (4.20), infere-se que não há recirculação 

no escoamento, o que poderia ser uma causa da perda de energia do fluido e perda de 

trabalho gerado no próprio rotor. Todavia, vale salientar que os efeitos transitórios 

foram negligenciados 

 

 

Figura 4.21: Contornos da Pressão no Plano do Raio Médio (Rm=0,067 m) 
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Ao comparar os resultados dos contornos de pressão (fig. (4.3), (4.4), (4.5) e 

(4.21)), percebe-se que ambas mostram que, na superfície de sucção, temos pontos 

em que a pressão está menor do que a atmosférica. Entretanto percebe-se que há uma 

grande diferença entre a pressão na seção de entrada da simulação bidimensional e 

tridimensional, essa diferença é atribuída as diferentes condições de contorno 

utilizadas na simulação bidimensional e tridimensional. 

 

 

Figura 4.22: Contornos da Temperatura no Plano do Raio Médio (Rm=0,067 m) 

 

As fig. (4.22) e (4.23) mostram, respectivamente, os contornos de temperatura 

e velocidade no plano do raio médio.  

A comparação entre os resultados da simulação bidimensional e 

tridimensional mostram que o campo de velocidades é semelhante, porém observa-se 

que as escalas são diferentes, uma vez que as magnitudes das velocidades são 

diferentes (a vazão simulada no caso bidimensional é menor). Essa diferença de 

escala também é verificada para os contornos de temperatura, pois o trabalho útil 

realizado é menor, o que implica em uma menor temperatura mínima na escala (para 
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o caso tridimensional 850K, enquanto para o bidimensional 835K).No caso 

tridimensional, a queda de temperatura no rotor é maior do que a queda de 

temperatura no estator, isso é conseqüência direta do alto grau de reação, conforme 

observado na tab.(4.1). 

 

 

Figura 4.23: Contornos da Velocidade no Plano do Raio Médio (Rm=0,067 m) 

 

A expansão no rotor pode ser mais caracterizada pelos gráficos representados 

nas fig. (4.24), (4.25) e (4.26). Cada gráfico corresponde a distribuição de pressão em 

função da posição da pá,em um determinado raio do rotor. A fig. (4.24) corresponde  

a distribuição para o raio igual a 0,055 m, enquanto as fig. (4.25) e (4.26) 

correspondem, respectivamente, aos raios 0,067 m e 0,079 m. 

Nesses gráficos, a curva da parte inferior corresponde a pressão na superfície 

de sucção (região convexa do rotor) e a parte superior, a pressão na superfície de 

pressão (região côncava). 
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Figura 4.24: Distribuição da Pressão na pá para R=0,055 m  

 

Figura 4.25: Distribuição da Pressão na pá para R=0,067 m 
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Figura 4.26: Distribuição da Pressão na pá para R=0,079 m 

 

A análise das fig.(4.24) a (4.26) mostram que a distribuição de pressão em 

torno da pá do rotorapresenta gradientes adversos de pressão, o que pode levar ao 

descolamento da camada limite do rotor, acarretando em perda de eficiência e de 

trabalho útil.  

O gradiente adverso de pressão é caracterizado de forma explícita através da 

fig. (4.26). Inicialmente observa-se um gradiente favorável de pressão (gradiente 

negativo) até 0,2, entretanto, neste ponto, há uma inflexão e o crescimento da pressão 

a jusante desse ponto é claro, caracterizando um gradiente positivo de pressão 

(gradiente adverso de pressão). 

Comparando qualitativamente os três gráficos, nota-se uma variação no 

formato da curva considerável na face de sucção, enquanto na face de pressão as 

curvas são semelhantes. Essa diferença no formato faz com que a distribuição da 

pressão sobre a pá na direção radial não seja uniforme. 

Obviamente, o fato de a turbina estar operando fora das condições de projeto 

implica na baixa geração de energia, entretanto, avaliando o grau de reação e o alto 

ângulo de saída do fluido (α3), é interessante reavaliar o as pás do rotor para que se 

obtenha maior aproveitamento da entalpia disponível no fluido.   
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5. SIMULAÇÃO NUMÉRICA DE TURBINA RADIAL 

 

Após o projeto da turbina radial, é necessário avaliar as características do 

rotor em relação ao escoamento e obter uma primeira avaliação do trabalho que essa 

turbina disponibilizará. 

A simulação seguirá os mesmos passos das simulações para turbina axial, 

apresentando o domínio e sua discretização, as condições de contorno, e a 

apresentação dos resultados. 

Entretanto a simulação da turbina radial passará apenas pela simulação 

tridimensional, que descreverá todo o fenômeno. 

 

5.1. Representação do Domínio de Estudo e Discretização 

 

O domínio foi separado em dois subdomínios: rotor e estator, assim como 

para a turbina axial. Entretanto não será simulada apenas uma pá do rotor e uma do 

estator, pois a geometria da voluta não é periódica, assim o escoamento em cada pá, 

tanto do rotor quanto do estator não é o mesmo, o que implica na simulação de toda a 

geometria do estágio da turbina. 

A discretização do domínio consiste na transformação de equações 

diferenciais em equações algébricas, assim viabilizando a solução numérica das 

equações. O domínio foi discretizado usando o software ANSYS ICEM CFD 12.0 

SP1. 

As equações resultantes da discretização das equações de transporte, bem 

como a dedução dessas equações, são apresentadas em [1]. 

A fig. (5.1) apresenta o domínio discretizado, já com as condições de 

contorno impostas. 
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Figura 5.1: Domínio discretizado e Condições de Contorno do modelo implementrado 

 

5.2. Condições de Contorno 

 

As condições de contorno da turbina radial diferem em alguns pontos da 

axial. Isso se deve a dois fatos principalmente: a não simplificação da geometria e os 

parâmetros de projeto da turbina radial.  

A rotação considerada do domínio do rotor é 10000 rpm. Essa condição foi 

imposta pelo gerador, que tem de operar por volta de 30 Hz. A condição de 10000 

rpm equivale a aproximadamente 26,5 Hz. 

A simulação da turbina axial baseou-se em simular apenas uma pá do rotor e 

uma pá do estator. Essa simplificação implicava em uma condição de periodicidade 

nas laterais do domínio, e, como não há mais essa simplificação, ela não está 

presente no modelo da turbina radial. 

As palhetas são consideradas paredes sem escorregamento (seguindo o 

princípio da aderência completa) e adiabáticas. 

A vazão de entrada no estator é 0,16 kg/s, portanto a condição na seção de 

entrada do estator é esse fluxo imposto e temperatura de entrada de 873,25K, o que 

corresponde a 600°C.  
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Na saída do rotor, foi imposta a pressão de 101325 Pa, pois a turbina expande 

o gás até a pressão atmosférica, sendo essa a condição de contorno. Caso verifique-se 

refluxo na seção de saída, é considerado que o gás entra a temperatura ambiente 

300K (aproximadamente 26,75°C). 

Para simplificação do problema em questão, considera-se que o fluido de 

trabalho se comporta como um gás perfeito. Em turbinas a gás, essa simplificação 

está próxima do real devido ao grande excesso de ar observado em turbinas. 

A interface entre rotor e estator, assim como definido para a turbina axial, é o 

‘Frozen Rotor’, que conserva as grandezas físicas de um domínio para outro. 

Essas condições foram impostas no software ANSYS CFX 12.0 SP1, que 

resolve as equações do domínio discretizado. 

Conforme adiantado, a fig. (5.1) mostra as condições de contorno já 

implementadas no CFX-Pre, ferramenta de pré-processamento do solver CFX para 

imposição das condições de contorno. 

 

5.3. Resultados 

 

O principal objetivo desta simulação é avaliar o projeto da turbina radial, a 

aplicabilidade da turbina radial e o comportamento do escoamento desde sua 

admissão na voluta até a sua saída. 

Diferentemente da turbina axial, não há dados experimentais e, portanto, o 

comportamento descrito pode ser muito diferente do observado durante a operação 

da turbina, principalmente em pontos de operação muito distantes do observado, 

conforme foi verificado na turbina axial. 

A fig.(5.2) mostra os contornos de temperatura em volta das pás. Observa-se 

o efeito da expansão na temperatura para cada pá. A região de admissão da pá mostra 

um valor mais elevado de temperatura devido à incidência do gás ser 65º 

aproximadamente, o que implica em um processo de diminuição da velocidade e 

conseqüente aumento da temperatura estática do fluido. Além disso, a realização de 

trabalho no rotor faz com que a temperatura total do fluido diminua e, como a 

velocidade do fluido não é alterada significativamente, a temperatura estática do 

fluido na seção de saída do rotor é menor do que a observada na seção de entrada, 
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conforme o esperado. Além disso, observa-se o processo de expansão ao longo da 

palheta e seu efeito na temperatura. 

 

 

Figura 5.2: Contornos da Temperatura nas pás do Rotor 
 

Além do aumento da temperatura na região de incidência do gás, também se 

observa o aumento da pressão nessa região, o que pode ser observado através da fig. 

(5.3), na qual a região de incidência do fluido na pá mostra uma maior pressão do 

que nos demais pontos da pá. 
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Figura 5.3: Contorno de pressão na seção de admissão da pá 
 

A tab. (5.1) mostra o trabalho obtido a partir da integração da pressão sobre 

as pás. Além disso, obteve-se o grau de reação do estágio projetado, relacionando o 

trabalho sobre as pás e a diferença de temperatura entre a seção de admissão da 

voluta e a seção de saída do rotor. 

 

Tabela 5.1: Resultados da Turbina Radial 

Resultados Turbina Radial 

Torque (Nm) 1,91 

Rotação (rpm) 10000 

W (kW) 2,00 

T1 (K) 873,25 

T3(K) 859,43 

Reação (%) 90,38 
 

O grau de reação foi elevado, por volta de 90%, entretanto há autores que 

salientam que rotores radiais não necessitam de estatores (ref [11]). Portanto, a 

influência do estator não é substancial para o bom funcionamento das turbinas 

radiais, o que não é observado para turbinas axiais nas quais os estatores têm papel 

significativo, tanto no processo de expansão quanto na deflexão do fluxo para que o 

fluido entre com um vetor velocidade com a direção necessária para a produção de 

trabalho. 
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O resultado da simulação numérica aparenta mostrar um bom projeto da 

turbina, uma vez que a turbina foi projetada para a obtenção de 2 kW de potência e o 

resultado obtido pela simulação também foi 2 kW. Vale salientar que o torque é 

obtido a partir da integral da pressão sobre todas as pás do rotor e, multiplicando o 

torque pela velocidade angular, obtém-se o valor da potência fornecida por esse 

rotor. 

Esse valor de potência não será observado em testes devido às perdas 

mecânicas que não são consideradas no modelo desenvolvido nesse trabalho. 

Entretanto uma estimativa pode ser feita, caso seja conhecido o sistema mecânico ao 

qual a turbina será acoplada. 

 

Figura 5.4:  Vetores Velocidades na seção de saída do dompinio do rotor 
 

Os vetores velocidades na seção de saída mostram o ângulo de ‘swirl’ (ângulo 

α3), para o qual espera-se um valor em torno de zero. O ângulo de ‘swirl’ está dentro 

do esperado, porém observa-se que para as regiões de maior raio, próximas ao raio 

superior da coroa circular, o ângulo de ‘swirl’ começa a fugir do especificado pelo 

triângulo de velocidades. A principal razão é o aumento da velocidade tangencial 
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com o raio, uma vez que o projeto foi desenvolvido para o raio médio das seções do 

rotor. 

Um projeto focado na máxima eficiência possível tem de levar em 

consideração esse fato e, do ponto de vista de máxima eficiência, é mais indicado o 

projeto de um rotor tridimensional, o qual leva em consideração a variação do 

triângulo de velocidade conforme o aumento do raio.  

Vale salientar que, em turbinas axiais, esse fato também é observado, tanto 

que há turbinas axiais em que a seção da pá não é constante na direção radial, o que 

não é o caso da atual turbina axial instalada no LETE, que tem seção constante na 

direção radial. 

 

 

Figura 5.5: Linhas de Corrente do Escoamento da Turbina Radial 

A Fig. (5.5) mostra as linhas de corrente da turbina radial. O alto ângulo de 

‘swirl’ se deve ao fato de que estão representadas as velocidades relativas (apenas no 

domínio do rotor), logo não representam as velocidades absolutas que correspondem 

a Fig. (5.4). 

Os refluxos observados são provenientes do não alinhamento entre as pás do 

rotor e do estator. Uma explicação para esse fato é de que todo o projeto é realizado 

para pás do estator e rotor alinhadas, entretanto a posição das pás do rotor variam 

com o tempo, o que implica em momentos de alinhamento entre as pás e momentos 
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de desalinhamento, que levam a perturbações no escoamento do gás e são essas 

perturbações que causam as recirculações. 

Neste projeto, o foco foi principalmente no desenvolvimento do rotor, o que 

deixou o projeto da voluta em segundo plano. Apesar desse fato, o projeto da voluta 

mostra-se eficiente, entretanto um maior aprofundamento nessa área tem de ser feito, 

inclusive a busca de referências sobre metodologias de projeto da voluta. 
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6. CONCLUSÕES 

 

O triângulo de velocidades é um método semi-empírico extremamente útil e 

válido para estágios iniciais do projeto, entretanto sua análise tem de ser 

complementada através do uso de ferramentas CFD, para melhor detalhamento do 

escoamento. 

A análise bidimensional da turbina axial corroborou os resultados do 

triângulo de velocidades, pois as velocidades descritas através da simulação 

numérica tiveram intensidades próximas das obtidas pelo método semi-empírico. A 

simulação numérica também permitiu observar a presença de uma recirculação no 

fim da pá do rotor, a qual implica em perdas de energia. 

Os resultados da simulação bidimensional foram satisfatórios, pois 

representam bem o fenômeno dadas as condições de contorno, mas as limitações têm 

de ser salientadas. Os efeitos na direção radial não foram considerados e, logo, é 

necessária uma análise 3D para avaliar com maior precisão o escoamento.  

Apesar da necessidade da realização de uma simulação tridimensional, a 

simulação bidimensional mostrou-se uma ótima ferramenta preliminar, uma vez que 

tem a vantagem de ter cálculos mais simples e, conseqüentemente, os resultados são 

obtidos rapidamente. 

A simulação da turbina axial mostrou a baixa potência obtida quando 

comparada com a potência de projeto, isso se deve, em parte, por ela trabalhar fora 

das condições para as quais foi projetada. Um exemplo é a rotação em que a turbina 

está operando (5412 rpm), valor muito distante do utilizado durante o projeto (15000 

rpm). 

Outro fator que pode intensificar o problema é o elevado ângulo de saída 

entre a direção axial e o vetor velocidade do gás na saída do rotor. Em [11], 

recomenda-se um valor máximo próximo de 10°, muito distante do valor de projeto. 

Somado a esse fato, observa-se um excessivo grau de reação (95%), ao comparar este 

valor com os encontrados na literatura, entre 30% e 50% ([2] e [11]). 

Após a análise completa da turbina axial, foi desenvolvido o projeto da 

turbina radial. Assim como foi feito em [4] para turbinas axiais, a principal 
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ferramenta utilizada no projeto inicial foi o triângulo de velocidades, um método 

semi-empírico que ajuda na previsão do funcionamento da turbina.  

Essa etapa inicial foi fundamental para a obtenção e definição dos parâmetros 

geométricos básicos da turbina radial, como diâmetros da seção de admissão e da 

seção de descarga e largura da seção de entrada. A metodologia foi explicitamente 

desenvolvida a partir da referência [7]. 

A primeira análise foi que há uma grande diferença de tamanho entre a 

turbina axial e a radial, sendo a radial muito maior. Isso acaba favorecendo a 

manutenção da turbina axial devido ao de ser mais compacta para a rotação de 

trabalho, 10.000 rpm.  

Uma explicação para esse fato é de que a turbina radial teria de operar a, 

aproximadamente, 18.000 rpm para manter o diâmetro próximo da atual. Isso 

demonstra que turbinas radiais têm de trabalhar em rotações mais elevadas para que 

consigam ser compactas, entretanto o fator limitante é o gerador elétrico que 

necessita de uma rotação em torno de 10.000 rpm. 

A simulação da turbina corroborou o projeto, pois o valor obtido para a 

potência gerada foi 2 kW, exatamente o valor imposto no projeto da turbina radial. 

Concluindo, a turbina radial é mais indicada para rotações mais elevadas e, 

para esta aplicação, é mais indicada a turbina axial por ser mais compacta. 
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ANEXO A – Rotina do Triângulo de Velocidades (Matlab) 
%CÁLCULO DO TRIANGULO DE VELOCIDADES 

%Unidades no SI 

 

%Constantes 

%Constante do Ar 

R=287; 

%Cp do Ar 

cp=1003.5; 

%Relaçao de Calores Específicos do Ar 

k=1.4; 

%Raio Médio da Turbina 

Rm=0.067; 

%Altura da Pá 

h=0.03; 

%Ângulos da Pá 

alpha1=0; 

alpha2=(70*3.14159265)/180; 

beta3=(77*3.14159265)/180; 

%Eficiencias Isoentrópicas 

eta_estator=0.75; 

eta_rotor=0.80; 

%Área da Coroa Circular 

A=2*3.1415*Rm*h; 

%Hipótese: A velocidade na entrada do estator tem direção axial 

C_w1=0; 
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%Velocidade de Rotacional no SI 

w=(10000*2*3.14159265)/60; 

%Velocidade Tangencial do Rotor no Raio Médio 

U=w*Rm; 

%Vazão Mássica 

m_dot=0.3; 

%Pressão na Seção de Entrada do Rotor 

p1=122325; 

%Temperatura na Seção de Entrada do Rotor 

T1=873.25; 

%Densidade Específica do Ar na Seção de Entrada do Rotor 

rho1=p1/(R*T1); 

%Velocidade Axial na Seção de Entrada do Rotor 

C_alpha1=m_dot/(rho1*A); 

 

%Chute Inicial da Velocidade Axial na Saída do Estator 

C_alpha2=C_alpha1; 

 

%Inicializaçao da variável Erro 

erro=1; 

 

%Cálculo da Velocidade no Estator 

while (erro>=0.005) 

    C_w2=C_alpha2*tan(alpha2); 

    energia_cinetica_12= ((C_alpha2^2+C_w2^2)-(C_alpha1^2+C_w1^2))/2; 

    delta_T_12=energia_cinetica_12/cp; 
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    T2=T1-delta_T_12; 

    delta_T_12_s=delta_T_12/eta_estator; 

    T2s=T1-delta_T_12_s; 

    p2=p1*(T2s/T1)^(k/(k-1)); 

    rho2=p2/(R*T2s); 

    C_alpha2_new=m_dot/(rho2*A); 

    if (C_alpha2_new>C_alpha2) 

        erro=C_alpha2_new-C_alpha2; 

    else erro=C_alpha2-C_alpha2_new; 

    end 

    C_alpha2=C_alpha2_new; 

end 

%Imprimi na Tela as Velocidades 

C_alpha2 

C_w2 

 

%Inicializaçao do erro 

erro=1; 

 

%Velocidade Relativa na Seção de Entrada do Rotor 

V_w2=C_w2-U; 

 

V_w2 

 

%Chute Inicial da Velocidade Axial na Saída do Estator 

C_alpha3=C_alpha2; 
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while(erro>=0.05) 

    V_w3=C_alpha3*tan(beta3); 

    energia_cinetica_23= ((C_alpha3^2+V_w3^2)-(C_alpha2^2+V_w2^2))/2; 

    delta_T_23=energia_cinetica_23/cp; 

    T3=T2-delta_T_23; 

    delta_T_23_s=delta_T_23/eta_rotor; 

    T3s=T2s-delta_T_23_s; 

    p3=p2*(T3s/T2s)^(k/(k-1)); 

    rho3=p3/(R*T3s); 

    C_alpha3_new=m_dot/(rho3*A); 

    if (C_alpha3_new>C_alpha3) 

        erro=C_alpha3_new-C_alpha3; 

    else erro=C_alpha3-C_alpha3_new; 

    end 

    C_alpha3=C_alpha3_new; 

end 

C_w3=V_w3-U; 

C_alpha3 

V_w3 

C_w3 

p3 

trabalho=m_dot*(V_w2+V_w3)*U/2; 

trabalho  
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ANEXO B – Arquivos das Simulações CFD 
 

Junto a este trabalho estão anexados os arquivos de simulação desenvolvidos 

durante a realização do Trabalho de Conclusão de Curso. 

Os nomes dos arquivos já compactados estão dispostos a seguir: 

• Simulação Turbina Axial Bidimensional: simulação 2D Final.rar 

• Simulação Turbina Axial Tridimensional: Simulacao Axial 3d.rar 

• Simulação Turbina Radial: simulação_radial_3D.rar 


